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FOREWORD

As resources tighten, the U.S. Army National Guard is continuing to search for ways to
enhance the effectiveness and efficiency of its tank gunnery training program. To this end, this
report describes the results of research showing that the resource efficiency of live-fire tank
gunnery evaluation on Tank Table VIII (the crew certification exercise) can be enhanced by
changing its content, to include fewer engagements, and its structure, to include performance
"oates" to support early qualification and remedial training decision. By making these changes,
the ARNG can save roughly 20-30% of the resources normally spent on Tank Table VIII without
jeopardizing its purpose or intent.

This research was conducted by the U.S. Army Research Institute for the Behavioral and
Social Sciences Reserve Component Training Research Unit (ARI-RCTRU), whose mission is to
improve the effectiveness and efficiency of Reserve Component training through use of the latest
in training and evaluation technology. This research is supported under Work Package VIII,
"Reserve Component Training Strategies (TRAIN-UP)" of ARI's Science and Technology
Program for Fiscal Year 1998.

The National Guard Bureau (NGB), under Project SIMITAR (Simulation in Training for
Advance Readiness) sponsored this research under a continuing Memorandum of Understanding
initially signed 12 June 1985. Findings have been presented to Director, Project SIMITAR; Chief,
Training Division, NGB.

W1 St

A M. SIMUTIS
hnical Director



ENHANCING THE RESOURCE EFFICIENCY OF LIVE-FIRE TANK GUNNERY
EVALUATION

EXECUTIVE SUMMARY

Research Requirement:

Develop a target engagement reduction methodology that supports resource-
efficient, live-fire gunnery evaluation on Tank Table VIII (TTVIII), the intermediate-
level, crew tank gunnery certification exercise.

Procedure:

Stepwise multiple regression routines (SPSS, 1993, 1994) were used to determine if
subsets of TTVIII engagements could be used to predict TTVIII total scores. The best
subsets of from two to nine engagements were identified and the predictive validity
specified for each.

Findings:

The findings suggest that TTVIII can be reduced from its current 10 engagements to
7 engagements. Scores on these seven engagements can be used to predict 10-
engagement-based TTVIII total scores with greater than 85% predictive accuracy. For
Army National Guard (ARNG) units, the seven engagements can be selected randomly.
For Active Component (AC) units, however, the predictive subset must consist of
specific engagements. For the ARNG, subsets consisting of as few as two engagements
can be used to identify tank crews with little chance of achieving first-run qualification
(Q1), and subsets consisting of as few as four engagements can be used to identify crews
with a high probability of firing Q1. Both predictions can be made with 95% accuracy.
For both the ARNG and AC, short-cut scoring models allow the prediction of 10-
engagement-based TT VIII total scores, based on subsets of any size, using simple
calculational steps.

Use of Findings:

This research shows that enhanced resource efficiency of live-fire tank gunnery
evaluation is possible for both the ARNG and AC without sacrificing the validity of the
evaluation process. For the ARNG, it is estimated that about 34% of current TTVII
ammunition costs could be saved by implementing an across-the-board reduction in the
number of TTVIII engagements from 10 to 7, and by implementing an early qualification
program wherein exceptionally proficient crews are awarded special recognition after
firing only four engagements. For the AC, savings of roughly 30% could be realized
from this across-the-board reduction in the number of TTVIII engagements.
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Enhancing the Resource Efficiency of Live-Fire Tank Gunnery Evaluation
Introduction

The challenge of attaining and maintaining required combat readiness levels in the
face of limited training time (e.g., Eisley & Viner, 1989) and diminishing resources (e.g.,
McAndrews, 1997, April) has prompted the ARNG to search for more resource-efficient
ways to conduct crew-served weapons training in its combat arms units. Just exactly how
to train more efficiently is not always clear, but recent approaches have relied on the use
of training aids, devices, simulators and simulations (TADSS). In armor units, for
instance, the ARNG is using TADSS to support the training of tank gunnery (e.g., Krug
& Pickell, 1996, February). This has prompted development of a Conduct-of-Fire
Trainer (COFT)-based tool for predicting live-fire gunnery performance (Hagman &
Smith, 1996), a strategy for using this tool in support of TADSS-based training during
weekend drill periods (Hagman & Morrison, 1996), and other TADSS-based strategies
designed to maximize the payoff from training resource expenditures (e.g., Shaler, 1994;
U.S. Army Armor School, 1995).

Although use of TADSS is likely to enhance the resource efficiency of tank gunnery
training and evaluation, it is also possible that additional efficiencies could be achieved
by streamlining the structure and content of live-fire evaluation exercises (i.e., tables).
The rising cost of main gun ammunition, growing restrictions on access to live-fire
range/maneuver areas, and the difficulty in transporting soldiers/crews to and from these
areas suggest that the benefits of more resource-efficient live-fire tank gunnery
evaluation could be substantial. Thus, an answer is needed to the question of whether the
number of live-fire tank gunnery engagements can be reduced without compromising the
validity of the evaluation process. The present report answers this question and describes
the process followed in doing so.

We selected Tank Table VIII (TTVIII) (i.e., the crew-level gunnery proficiency
certification exercise) as the target of our research. This table consists of 10 ,
engagements, selected from a possible 12, that encompass a variety of offensive and
defensive combat scenarios with single and multiple stationary and moving targets (see
Appendix A) (Department of the Army, 1993). Although 10 TTVIII engagements have
been fired for years to assess tank gunnery proficiency, the tightening of resources now
forces a look at the question of whether fewer engagements (and resources) can be used
to do the same job.

To answer this question, we examined each engagement to determine its relative
predictive contribution to the TTVIII total score (i.e., that based on 10 engagements).
Our expectation was that some engagements would be better predictors than others, and
that this would lead to the identification of specific subsets of engagements that, in turn,
would lead to the most accurate predictions. These identified subsets might consist of as
few as one or two engagements or as many as nine. If these subsets, regardless of their
size, produce accurate predictions, then they could be used in place of the full 10-
engagement scenario for qualification purposes, thereby saving time and money without
sacrificing the validity of the tank gunnery evaluation process.




In summary, four objectives guided our research, to (1) develop a target engagement
reduction methodology to support resource-efficient, live-fire TTVIII tank gunnery
evaluation in the ARNG, (2) identify which specific TTVIII target engagement subset(s)
to use for best results, (3) estimate the magnitude of resource (e.g., time, OPTEMPO,
dollars, ammunition) savings that could expected from use of these subsets for crew
certification purposes, and (4) determine the generalizability of our results to the Active
Component (AC).

Experiment 1

Method

Participants/Data Source

To accomplish these objectives, we analyzed the first-run TTVIII tank gunnery
scores of 716 armor crews contained in Project SIMITAR’s (Simulation in Training for
Advanced Readiness) gunnery performance database (Smith, 1998a, 1998b). These
scores (both individual engagement and total scores) were collected between 1993-1997
from the ARNG’s enhanced armored and mechanized infantry brigades headquartered in
Idaho, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee.

Procedure

Stepwise multiple regression routines (SPSS, 1993, 1994) were used to determine if
subsets of TTVIII engagements could be used to predict TTVIII total scores. The best
subsets of from 2 to 9 engagements were identified and the predictive validity specified
for each.

After conducting cross-validation procedures to establish the internal consistency
and generalizability of the data, we began the process of identifying optimal subsets of
predictors with identification of the TTVIII engagement that best predicted the table’s 10-
engagement-based total score. Identification was based on part-whole Pearson product-
moment coefficients of correlation () between individual engagement and TTVIII total
scores. The best individual predictor (i.e., engagement score) was then used to construct
a prediction equation of the form:

Equation 1: Y = By+Bi(Xy)

where Y~ is the predicted TTVIII total score, By is the intercept (or theoretical TTVIII
score when the predictor variable equals zero), B is the empirically derived regression
coefficient linking changes in the criterion variable (i.e., TTVIII total score) with changes
in the predictor variable (i.e., engagement score), and X is the engagement score most
highly correlated with the criterion variable.

In a simple regression model of this type, the correlation between predicted (¥”) and
observed TTVIII scores (¥) will equal the correlation between the predictor variable (X,




the single engagement score with the greatest predictive power) and the criterion variable
(7, the observed TTVIII total score). The square of this value is known as the coefficient
of determination (R®), which indicates the proportion of the variance among criterion
scores that can be explained by differences in the predictor variable. If the correlation

- between the identified engagement score and the observed total score is 7 = .70, for

instance, then the coefficient of determination would be .49 (.70% = .49), which in this
instance would mean that 49% of the differences in crews’ TTVIII total scores could be
predicted on the basis of a single engagement score.

The next step was to examine the remaining nine engagements for the one that most
significantly enhanced the predictive power of the first engagement. The extent of the
new predictor’s incremental power depended upon the strength of its relationship with the
criterion’s residual scores, after the linear effect of the first predictor was removed. After
all pair-wise combinations of the original predictor with each of the remaining potential
predictors were tested and the best second predictor (i.e., engagement score) was
identified, a new multiple regression prediction equation was developed using the
combined predictive power of the two best predictors. The new prediction equation took
the following form:

Equation 2: Y’ = By+ Bi(Xh) + B2X2)

where Y”, By, B, and X, are as defined in Equation 1, B; is the empirically derived
regression coefficient linking changes in the TTVIII criterion variable with changes in the
second predictor variable, and X; is the second predictor variable-—the one that most
strongly augments the predictive power of the original predictor.

Because it contains more than one predictor, Equation 2 is an example of a multiple
regression equation. It yields a coefficient of multiple correlation (R), which is a measure
of correlation between the criterion variable and a weighted linear composite of two (or
more) predictor variables. When the coefficient of multiple correlation is squared R, it
can be interpreted in the same manner as the coefficient of determination discussed above
for the case of a single predictor. It becomes, in effect, a coefficient of multiple
determination.

The two-predictor multiple regression prediction equation was then fitted to the data,
yielding a new set of criterion residual scores. The new set of residuals represented the
criterion scores after the linear effect of the first two predictors was removed. Then the
remaining engagements were examined to identify the one that most significantly
enhanced predictive power when it was added to the two-predictor model to form a new
three-predictor model. This step produced a new prediction equation structurally similar
to Equation 2 except that it contained the term, B3(X3), which represented the third
predictor and its empirically determined regression coefficient:

Equation 3: Y’ = Bo + Bl(Xl) +Bz(X2) + B3(X3)




This procedure was repeated as long as additional predictor variables (i.e., engagements)
significantly enhanced the predictive power of the resulting equation. The addition of
predictor variables to a multiple regression prediction equation is theoretically unlimited.
The general form of the equation is:

Equation 4: Y’ = Bo+Bi(Xy) + Ba(Xs) + By(Xs) + Bo(Xa)

where Y*, By, B1, X1,B2, Xz, B3, and X; are as defined Equations 1-3 and the term By(Xn)
represents the nth predictor variable (X) and its empirically determined regression
coefficient, By.

Selection criteria for individual predictors. We continued to add new predictors
until the point when the next predictor did not significantly (p < .05) enhance predictive
power. We did not know how many engagements would be necessary to reach this point.
On the one hand, it was possible that each of the 10 individual engagements would
~ contribute a proportional amount of unique variance to the prediction equation (i.e.,
10%), and that none of them could be excluded without sacrificing its unique
contribution. On the other hand, it was more than likely that some engagements would
have more predictive power than others. If this were the case, then the bulk of predictive
accuracy might be accounted for by a subset of engagements, and once this subset was
constituted, the addition of more predictors would add little predictive power. If this
occurred, then one or more engagements could be excluded from the recommended
engagement-reduction solution. The exact number of engagements to be dropped,
however, would depend to a large extent on acceptable estimation criteria based on the
subset of selected engagements.

Minimum acceptable predictive accuracy. The minimum acceptable predictive
accuracy depends upon standards established by individual users. Undoubtedly, some
users will demand higher levels of predictive accuracy than others. Accordingly, we
decided to present sufficient information to permit users to evaluate the adequacy of
engagement reduction procedures under five levels of predictive accuracy: 70%, 80%,
85%, 90%, and 95%. Seventy percent predictive accuracy served as our minimum
recommended level and ninety-five percent accuracy served as the ideal, with
intermediate levels of 80%, 85%, and 90% available as well. Thus, we wanted a
potential user of our results to be able to specify the minimum acceptable level of
predictive accuracy and then select the smallest engagement subset size satisfying that
criterion. Although users may select any level of predictive accuracy from 70% to 95%,
our discussions principally focused on the highest (95%) level.

Results

Descriptive Data

Table 1 presents the means and standard deviations (SD) for TTVII total and
individual engagement scores. These means ranged from 45.4 to 78.4 with the highest
found for engagement B1 and the lowest found for engagement AZ2.




The first row of the data correlation matrix, shown in Table 2, gives part-whole
coefficients of correlation between the TTVIII total score and each engagement score.
Other rows in the matrix present intercorrelations between pairs of engagements. Part-
whole correlations ranged from .432 (B1) to .568 (B4) with a mean of .487.
Intercorrelations among engagements ranged from .076 (A5, B2) to .323 (B2, B4) witha
mean of .155. The relatively low intercorrelation among engagements indicates that
performance on one engagement cannot be predicted on the basis of performance on
another. The relatively robust part-whole correlations, in contrast, indicate that every
engagement has the potential of making its own contribution to TTVII total score
predictions.

Table 1
TTVII Descriptive Data (N = 716)
Mean SD
Variable
Total 614.0 194.0
Al 48.3 41.5
A2 454 41.1
A3 57.2 36.3
A4 58.3 41.6
AS 65.3 40.2
B1 78.4 38.7
B2 62.8 414
B3 55.6 354
B4 65.8 40.7
B5 76.4 40.2
Table 2
TTVIII Correlation Matrix

Al A2 A3 A4 AS Bl B2 B3 B4 B5

Total 497 517 453 .540 455 432 497 462 .568 451

Al 164 162 133 205 133 132 .168 171 131
A2 .180 191 202 179 175 138 187 .106
A3 .189 147 .102 .146 141 151 .079
A4 265 7 .190 .161 131 210 .146
A5 .106 076 079 078 085
B1 .083 111 134 077
B2 .186 323 .150
B3 ’ 241 .143
B4 ' 287

Split-Half Cross-Validation

A split-group, cross-validation design (Tatsuoka, 1969) was used to test for internal
consistency and generalizability of the data to other ARNG tank crew samples.
Approximately half of the 716 tank crews were assigned at random (by SPSS Version 6.1
for Windows) to the normative group and the other half were assigned to the cross-
validation group. A series of least squares multiple regression prediction equations was
then developed for the normative group. Stepwise procedures were used to select optimal




subsets of 1,2, 3, 4, 5, 6, 7, 8 and 9 predictor variables with a separate equation
developed for each subset size. All prediction equations were statistically significant,
producing Multiple R ’s ranging from .58 (based on 1 predictor) to .98 (based on 9
predictors) and F ratios ranging from 183.57 (df = 1, 353) to 967.52 (df =9, 345), with a
rejection region of .0001 used for all equations. :

The equations for the normative group were then tested on the cross-validation group
and the accuracy of predictions for the two groups compared. Results revealed that,
regardless of the number of predictors involved, models developed from normative group
data accounted for a comparable amount of TTVIII total score variance in the cross-
validation group. Tests for differences between Multiple R’s (Hayes, 1963) produced
nonsignificant z values ranging from < 1 to 1.68. Thus, the predictive models were found
to be valid and, therefore, likely to maintain similar efficiency when used to predict the
TTVI total scores of other ARNG tank crew samples. Given the similar outcomes of
the separate group analyses, along with our desire to obtain the best possible predictions
from the largest sample size possible, subsequent analyses were conducted on pooled-
group data (N=716).

Development of Pooled-Group Prediction Equations

Using previously described stepwise multiple regression procedures, we developed
prediction equations for the best subsets of 1, 2, 3,4, 5,6, 7, 8, and 9 engagements (see
Table 3). The order of engagement entry into the equations is shown in the first column.
The equations themselves are shown in Table 4.

Table 3
Stepwise Multiple Regression Results

Order of Multiple Adjuzsted

Entry R R SE ar F p
1 B4 568 321 159.80 1,714 339.77 10001
2 A4 713 507 13623 2,713 368.43 .0001
3 Al 801 640 11647 3,712 42389 0001
4 A2 859 737 99.53 4,711 501.29 .0001
5 B3 891 792 88.51 5,710 545.02 .0001
6 B2 915 837 78.42 6,709 611.18 0001
7 AS 939 880 67.21 7,708 749.92 .0001
8 Bl .960 921 54.37 8,707 104925  .0001
9 BS 981 962 39.03 9,706 188392  .0001

Prediction equations for every subset size were statistically significant, producing
Multiple R ’s ranging from .57 (based on 1 predictor) to .98 (based on 9 predictors) and F
ratios ranging from 339.77 (df=1, 714) to 1,883.92 (df=9, 706). The first predictor to
enter the equation (B4) had the highest zero-order correlation (» = .568) with the criterion
(see Table 2). This predictor alone accounted for almost one third of TTVIII total score
variation (32.1%). The addition of the second predictor (A4) boosted the proportion of
explained variance to 50.7%, and the proportion increased significantly with the addition
of each subsequent predictor. :




Table 4
Prediction Equations for Subset Sizes 1 to 9

Subset
Size ~ Prediction Equation

1 Y’ =435.9196 + 2.7063(84)

2 ¥ =344.9851+2.0561(44) + 2.2661(B4)

3 ¥ =288.7183 + 1.7377(41) + 1.8807(44) + 2.0006(B4) _

4 Y'=254.9244+1.5543(41) + 1.5276(42) + 1.6594(44) + 1.7909(B4)

5 ¥=209.3420 + 1.4230(41) + 1.4454(42) + 1.5898(44) + 1.3429(B3) + 1.5627(B4)

6 Y =178.7824 + 1.3730(41) + 1.3463(42) + 1.5151(44) + 1.0653(B2) + 1.2269(B3) +
1.2806(B4)

7 Y =135.8675+ 1.2125(41) + 1.2038(42) + 1.2866(44) + 1.0670(45) + 1.0640(B2) +
1.2145(B3) + 1.3049(B4)

8  Y'=78.1757 + 1.1407(41) + 1.0852(42) + 1.1561(44) + 1.0437(45) + 1.0550(B1) + 1.0624 (B2)
+ 1.1584(B3) + 1.2473(B4)

9 y'=32.9177 + 1.0832(41) + 1.0670(42) + 1.0954(44) + 1.0186(45) + 1.0444(B1) + 1.0223 (B2)
+1.0951(B3) + 1.0234(B4) + 0.9902((B5)

Random Subsets of Engagements

As shown in Table 3, the order in which engagements were entered into the stepwise
routine was: B4 - A4 —» Al — A2 —» B3 -5 B2 — A5 —» B1 -5 B5 — A3. To obtain
optimal predictive accuracy, the best combination of two predictors would be B4 + A4.
The best combination of three predictors would be B4 + A4 + Al. For a subset of four
predictors, the next engagement in the sequence (A2) would be added to the first three.
In this manner, subsets of any desired size could be created.

Unfortunately, knowledge of which subsets of engagements serve as the best TTVIII
total score predictors introduces the possibility of units “training to the test” in order to
save time, especially if any of these subsets were eventually to take the place of the
current 10-engagement TTVII scenario. To discourage training to the test and, thereby,
promote the training of the widest variety of engagements possible in preparation for
TTVIII firing, engagements to be included in any particular subset could be selected at
random. A random selection process would necessitate training on all relevant
engagements because crews would not know beforehand which particular subset(s) of
engagements would be included on TTVIIL. The predictive accuracy of randomly
selected subsets of engagements, however, is not known. So the question is, then,
whether predictive accuracy would be seriously reduced or not if TTVIII subsets were
selected at random

To answer this question, random subsets of engagements were constituted for subset
sizes ranging from two to nine. This was accomplished by labeling 10 coins A1l through
A5 and B1 through B5. The coins were placed in a hat and drawn (blindly) to constitute
a random subset of engagements of the desired size. Once a subset was constituted,
drawn coins were replaced, the coins were shaken to redistribute them physically inside
the hat, and the process was repeated until a total of five random subsets were constituted
for each subset size from two to nine. Subsets of size six or greater were created by




random exclusion. That is, to create a subset of size 6, four engagements were drawn
randomly and excluded. The six engagements remaining in the hat became the subset.
For subsets of size seven, three engagements were randomly excluded, and so on. This
produced five 2-engagement random subsets, five 3-engagement random subsets, five 4-
engagement random subsets, and so on, up to and including five 9-engagement random
subsets. In all, 40 random subsets were constructed, 5 for each of 8 possible subset sizes.

For each of the 40 random subsets, multiple regression procedures were used to
construct prediction equations. For each subset size, the predictive power of random
subsets of engagements was then compared to the predictive power of the best possible
combination of engagements identified statistically.

Random subsets of N = 2 through 6. The predictive power of randomly constituted
subsets of 1, 2, 3, 4, 5, and 6 engagements was tested against the predictive power of the
best subsets of predictors of each corresponding size. For each subset size, z tests
between the mean Multiple R for the random subsets and the Multiple R for the best
predictors indicated that the latter were superior. The z scores were 2.64, 2.89, 2.91,
2.57, and 2.11 for subsets sizes 2 through 6, respectively. The first four z values were
significant at p < .01, and the last one was significant at p <.05. Details of these analyses
can be found in Appendix B.

Random subsets of N = 7. Table 5 presents the results for subsets of N=7. The first
five rows present multiple regression results for the 5 random subsets. Means in the sixth
line of the table are based upon the five individual random subsets. The cell under the
“p” column for the “Mean” row is blank because it is meaningless to calculate a mean
probability level in this situation. The last line in the table provides multiple regression
results based upon the seven best predictors (B4 + A4 + A1 + A2 + B3 + B2 + AS).

Seven-predictor random subsets accounted, on average, for 85.8% of criterion (i.e.,
TTVII total score) variance and produced SEs in the 70s, along with F ratios averaging
over 600. By comparison, the 7 best predictors accounted for 88.0% of criterion
variance. A test between the mean Multiple R for the random subsets and the Multiple R
for the seven best predictors indicated that the latter were comparable to random subsets,
z=1.72,p>.05. Although the best seven engagements were numerically better
predictors, their 2.2% advantage was not statistically reliable. Thus, randomly selected
subsets of size N = 7 were as effective in predicting TTVIII total scores as the seven best
predictors identified on the basis of regression routines.

Eight-predictor random subsets accounted, on average, for 91.3% of criterion
variance and produced SEs in the 50s, along with F ratios approaching 1,000. By
comparison, the eight best predictors accounted for 92.1% of criterion variance. A test
between the mean Multiple R for the random subsets and the Multiple R for the eight best
predictors indicated that the predictive power of the best predictors did not differ
significantly from that of random subsets of the same size, z < 1, p>.05. The best
engagements enjoyed an advantage of only 0.8% which was statistically nonsignificant.
Thus, randomly selected subsets of size N = 8 were as effective in predicting TT VIII total




score as the eight best predictors identified on the basis of stepwise multiple regression
routines.

Table 5
Random Subsets of N = 7 vs. the Seven Best Predictors

Excluded Multiple  Adjusted

Predictors R R? F(7, 708) p SE
AS, B4, B5 931 866 658.99 <0001 71.11
B2, B3, B4 919 843 548.15 <0001 76.94
A3, B2, B4 .927 857 61327 <0001 73.35
A2, A5, B2 .930 863 64298  <.0001 71.87
Al, AS, B3 928 .860 628.13 <0001 72.60
Mean 927 858 618.30 73.17
Best 7 .939 880 74992 <0001 67.21

Random subsets of N = 8. Table 6 presents the results for subsets of N=8. The last
line in the table provides multiple regression results based upon the eight best predictors
(B4+ A4+ Al +A2+B3+B2+ A5 +Bl).

‘ Table 6
Random Subsets of N = &8 vs. the Eight Best Predictors

Excluded Multiple  Adjusted

Predictors R R? F(8, 707) p SE
Al, A4 954 .909 895.33 <.0001 58.47
Al A3 .955 911 911.89 <.0001 57.99
Bl1, B2 957 916 971.50 <.0001 56.33
A4,B3 -.958 918 995.80 <.0001 55.70
B2, B5 956 913 940.79 <.0001 57.16

Mean 956 913 943.06 57.13
Best 8 .960 921 1,04925 <0001 54.37

Random subsets of N = 9. Table 7 presents the results for subsets of N=9. The last
line in the table provides multiple regression results based upon the nine best predictors
(B4 + A4 + A1+ A2 +B3 +B2 + A5 + Bl + BS).

Table 7
Random Subsets of N = 9 vs. the Nine Best Predictors

Excluded Multiple Adjusted

Predictor R R F(8, 707) p SE
B5 977 953 1,621.09 <.0001 41.94
A4 976 952 1,571.85 <.0001 42.56
AS 978 956 1,731.24 <.0001 40.65
B4 .979 958 1,806.96 <.0001 39.82
Bl1 976 953 1,595.23 <.0001 4227

Mean 977 .954 1,665.27 4145
Best 9 981 .962 1,883.92 <.0001 39.03




Nine-predictor random subsets accounted, on average, for 95.4% of criterion
variance and produced SEs in the 40s, along with F ratios of over 1,000. By comparison,
the nine best predictors accounted for 96.2% of criterion variance. A test between the
mean Multiple R for the random subsets and the Multiple R for the nine best predictors
indicated that the predictive power of the best predictors did not differ significantly from
that of random subsets of the same size, z < 1, p >.05. Thus, randomly selected subsets of
size N =9 were as effective in predicting TTVIII total scores as the nine best predictors
identified on the basis of stepwise multiple regression routines.

For subsets consisting of from two to six engagements, the greatest predictive power
is achieved by following the engagement selection strategy supported by stepwise
multiple regression procedures. For larger subsets, however, randomly selected
engagements have about the same predictive power as the best engagements. The
practical implication of this is that crews can be trained on all 10 TTVIII engagements
(plus a variety of others not included in the table) but tested on random subsets of at least
seven engagements TTVIII total scores can then be predicted based upon the
administered random subset. The accuracy of the resulting estimates will depend upon
subset size with predictive accuracy equaling or exceeding 95%, 90%, and 85% with
nine, eight, or seven randomly selected engagements, respectively.

A Shortcut Prediction Model

For subset sizes of six or smaller, the preferred course or action would be to use
engagements identified by stepwise multiple regression procedures. For larger subsets,
particular engagements are less important. Randomly selected subsets of engagements
seem to work as well as subsets identified by stepwise procedures as long as at least
seven engagements are used.

Regardless of the size of the subset, however, and regardless of whether
engagements in the subset are selected randomly or statistically, the user is still saddled
with a cumbersome prediction process when it comes to actually implementing the
predictive model. The commander who wants to trim one engagement from the standard
10-engagement TTVIII scenario, for example, must administer nine engagements, score
them, and then multiply each engagement score by its respective regression coefficient
from Table 4. The resulting nine weighted scores then must be summed and added to the
nine-engagements’ prediction equation constant (32.92) in order to arrive at the predicted
10-engagement TTVII total score. For nonresearchers, this could be an overwhelming
requirement, especially when performed in the field. Some commanders might even
argue that calculating the predicted 10-engagement TTVIII total score based on nine
engagements would take more time and effort than shooting all 10 TTVIII engagements
in the first place. '

All of which raises the question of whether it is possible to develop a shortcut
prediction model that can be easily implemented in field settings with minimal sacrifice
of predictive accuracy. One approach might be to drop regression coefficients altogether.
We know that as subset size approaches 10, regression coefficients become progressively
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uniform, and hence unneeded. In fact, when all 10 possible predictors enter the
prediction equation, coefficients approximate unity (i.e., 1.0). From the results above, we
know that when subset size is six or greater, engagements are basically interchangeable,
which means that regression coefficients are also interchangeable, and hence unneeded.

An examination of the regression coefficients produced in the seven-, eight-, and
nine-engagement prediction models revealed little variation in their magnitudes. (see
Table 4.) For the nine-engagement prediction model, for instance, coefficients hovered
around 1.0 with a mean of 1.048846. If all the coefficients are essentially identical, it
should be possible to eliminate them and substitute a procedure that weighs each
engagement equally and eliminates the constant. -

If regression coefficients could be dropped altogether without undue sacrifice of
predictive precision, a possible shortcut prediction model could be reduced to three steps:

1: Add the engagement scores of the desired subset size.
2: Divide the sum by Ny, the number of engagements in the subset.
3: Multiply the quotient by 10.

In this manner, each engagement is weighted equally (by dividing by N) and the
mean of all engagements in the subset is extrapolated to a 10-engagement TTVIII total
score (by multiplying by 10). The shortcut procedure has the effect of lumping the

-variance from all available engagements into a single predictor.

The efficacy of the proposed shortcut prediction model was tested by constructing a
series of shortcut predictor variables. For each subset size (from N = 2 through 9), six
shortcut predictor variables were constructed. The first shortcut variable for each subset
size was based on the best set of engagements identified in the stepwise regression
procedures. For example, for the N = 2 subset, the first shortcut predictor variable was
calculated by this procedure:

[(B4 + A4)/2] x 10

Thus, if a crew fired a score of 55 on engagement B4 and a score of 97 on engagement
A4, its (shortcut) predicted TTVIII total score would be 760. This shortcut score was
then used as an independent variable to predict actual TTVIII scores.

The other five shortcut predictor variables (for each subset size) were based on the
randomly constituted engagement subsets described earlier. These subsets are listed in
Appendix B for subset sizes two through six, and in Tables 5, 6, and 7 for subset sizes
seven, eight, and nine, respectively. The first random shortcut predictor variable, for
example, was created with the following procedure:

[(A3 + B5)/2] x 10

Each random shortcut predictor variable was then used to predict actual TTVII scores.
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Regardless of subset size, the primary interest was in whether the shortcut method
could be used to predict TTVIII total scores with the same degree of accuracy as models
incorporating individual engagement scores and regression coefficients. A secondary
interest was in the relative effectiveness (for each subset size) of shortcut predictions
based on random subsets of engagements vs. shortcut predictions based on subsets
consisting of the best possible engagements.

The results of the shortcut test appear in Table 8. The first column under the “Full
Regression Models” heading shows R values for each subset size for the best
engagement predictors as determined by stepwise multiple regression procedures. The
second column under the Full Regression Models heading shows mean R values from
five randomly constituted subsets of engagements. The data in the two columns under
Full Regression Models are derived from Appendix B and from Tables 5-7. By
comparing these two columns, it can be seen that the best predictors consistently
outperform randomly selected predictors up to subset size N = 7, at which point random
subsets do not differ statistically from the corresponding subsets consisting of the best
possible predictors. B

The last two data columns in Table 8 are based on shortcut regression models. The
next-to-last column presents R° values using shortcut models based on the best predictors
for each subset size. The last column contains mean R value obtained from five shortcut
regression models based upon randomly selected subsets of predictors. The values in the
last two columns resemble those in the first two columns, with the best subsets
outperforming randomly constituted subsets until subset size N = 7 is reached, after
which point the values do not differ significantly.

Table 8
R Values for Full Regression Models vs. Shortcut Regression Models
Full Regression Shortcut Regression Models
Models (R?) ®R?)

Subset Best Random Best Random
Size Subsets Subsets Subsets Subsets
2 507 403 .507 401
3 .640 542 639 .543
4 737 660 736 658
5 792 734 792 732
6 837 .802 .833 799
7 .880 858 879 856
8 921 913 921 912
9 .962 954 960 954

Table 8 reveals that the shortcut prediction method can be used successfully with
reduced subsets of any size. It also reinforces the earlier finding that predictions based on
small subsets should use the engagements identified in the stepwise regression procedure
as the best possible predictors, whereas predictions based on subsets of N = 7 or more can
use engagements selected at random.
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An Alternate Definition of Predictive Accuracy

To this point, we have defined predictive accuracy as R, the proportion of criterion
variance accounted for by a weighted linear model based upon a subset of engagement
scores. R?is obtained by squaring the correlation coefficient between observed and
predicted TTVIII scores. As such, it is a measure of the goodness of fit of a linear model.
R? has precise meaning to researchers, but it is less meaningful to most others.
Fortunately, it is not the only definition of predictive accuracy.

Instead of predicting specific scores on TTVIILL, it is also possible to predict crew
qualification status. This prediction can have more intuitive appeal to military leaders
because they are often more interested in qualification vs. nonqualification than in
specific scores. The important thing to them is whether actual and predicted scores are
above or below 700, the minimum cutoff score for TTVIII qualification. Efforts to
predict qualification status on the basis of subsets of engagements have four possible
outcomes:

1. A crew is predicted to qualify and does.

2. A crew is predicted to qualify but does not.

3. A crew is predicted not to qualify and does not.
4. A crew is predicted not to qualify but does.

Outcomes 1 and 3 are predictive successes. Outcomes 2 and 4 are predictive
failures. A measure of predictive accuracy can be defined as:

[(D+EN/ D+ 2)+G) + (4]

This is a stringent definition of predictive accuracy because predictions of
qualification vs. non-qualification are based on scores from all parts of the predictor score
distribution. As an example, consider the shortcut prediction method with subset size N
= 2. The scores from two engagements are summed, divided by 2, and multiplied by 10,
producing a distribution of scores that is likely to range from 0 to 1,000, with a mean of
about 614 (see Table 1). Crews that obtain a score close to 0 on this shortcut predictor
are unlikely to qualify, whereas crews with scores approaching 1,000 have an excellent
chance of qualifying. Thus, predictions based on extreme predictor scores are likely to
produce outcomes of Types 1 and 3 and are likely to be predictive successes.

With scores that fall near the midpoint of the shortcut predictor distribution,
however, predictions are more difficult. A crew with a score of 700 on the shortcut
predictor, for example, could easily fall on either side of the 10-engagement-based
qualification cutoff. For this reason, dichotomous criterion outcomes are most accurately
predicted when they are based on extreme scores in the tails of the shortcut predictor’s
distribution. A practical application of this principle is that it should be possible to make
directional predictions, based on subsets of engagements, with high levels of predictive
accuracy.
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Identifying Crews for Early Tank Table VIII Elimination

Of the 716 crews included in the SIMITAR database, 58.9% failed to qualify on
their first-run (i.e., did not Q1). Armed with this knowledge, and knowing nothing more
about any particular crew, the best guess that could be made regarding the outcome of a
given crew’s first-run qualification attempt would be to predict failure. A Q1 failure
prediction would be correct about 60% of the time. Is it possible that crews with little
chance of Q1 success could be identified early in the evaluation process on the basis of
their performance on key predictive engagements? If so, these crews could be recalled to
the starting line, thereby saving the ammunition they would have fired on subsequent
engagements. Recalled crews could then be sent for device-based remedial training and
allowed to return to the live-fire range only when device-based performance indicated a

satisfactory probability of success (Hagman & Smith, 1996).

Formalizing early elimination predictions. For any given subset size (Nap), the
minimum score (Egrm) necessary in order to avoid early elimination can be predicted
from the general equation:

Equation 5: Egim = ([700 - (1.65 * SE)] / 10 )* Naw

where 700 represents the minimum 10-engagement-based TT VIII score required for
qualification, 1.65 is the normal deviate (in a one-tailed directional test) for 95%
confidence, SE is the standard error of estimate, and Ny is the subset size (i.e., number
of engagements) upon which the prediction is based, with a potential range in this
instance of from two to nine. Crews failing to equal or exceed the stipulated minimum
cutoff score could be eliminated from firing further TTVII engagements with 95%
confidence that their eventual score would have been less than 700 if they had continued
to fire all the engagements. The SEs are based on stepwise regression procedures (see
Table 3). Table 9 presents the minimum Fgsm score for each subset size. After firing the
number of engagements listed in the far left column, crews failing to accumulate at least
the number of points specified in the far right column would have no more than a 5%

subsequent chance of Q1.

Table 9
Minimum Egym, Values to Avoid Early Elimination
Y e —
Subset Prediction Equation Egtim
Size

2 Egin = [700 - (1.65 * 136.2)] / 10 * 2 95

3 FEgim = [700 - (1.65 * 116.5)] /10 * 3 152

4 Egpim = [700 - (1.65 * 99.5)] / 10 * 4 214

5 Egjim = [700 - (1.65 * 88.5)] /10 * 5 277

6 FEgiim = {700 - (1.65 * 78.4)] /10 * 6 342

7 FEgiim = [700 - (1.65 ¥ 67.2)] /10 * 7 412

8 Egtim = [700 - (1.65 * 54.4)} / 10 * 8 488°

9 Egim = [700 - (1.65 *39.0)] /10 * 9 572°

# Crews are mathematically eliminated with a score < 500.
Crews are mathematically eliminated with a score < 600.
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Testing the early elimination model. Scores from the SIMITAR database were used
to test the early elimination prediction model and the equations in Table 9. All subsets
were based on optimal predictors as identified by stepwise regression procedures (see
Table 3). For example, using a subset size of two, each crew’s scores on engagements
B4 and A4 were summed. Summed scores were then partitioned into those < 95 and
those > 95. No predictions were made for crews with scores > 95. Crews with scores <
95, in contrast, were predicted to have no more than a 5% chance of Q1.

This procedure was then repeated for each subset size, using appropriate cutoff
scores from Table 9. For example, crews with scores of less than 152, on the basis of
three engagements, were flagged as unlikely to Q1. With four engagements, the cutoff
point was 214, and so on.

The accuracy of these failure-to-qualify predictions were then tested by noting
whether crews scoring below the stipulated cutoff points actually failed to qualify, based
on their 10-engagement-based TTVIII total score. The pertinent question was what
proportion of the crews identified by this procedure actually failed to Q1. Table 10
shows the actual performance outcomes (i.e., either < 700 or > 700) of crews flagged as
unlikely to fire Q1.

Table 10
Accuracy of Early Elimination Predictions
Subset Actual TTVIII Actual TTVIII
Size Score < 700° Score = 700° Predictive Accuracy

2 N= 200 (27.9%) N=14(2.0%) 200/214=93.5%
Mean = 409.8 Mean = 737.6

3 N =247 (34.5%) N=152.1%) 247/262 = 94.3%
Mean =421.0 Mean = 734.5

4 N =314 (43.9%) N=25(3.5%) 314/339=92.6%
Mean = 443.2 Mean = 727.0

5 N=323(45.1%) N=23(3.2%) 323/346 = 96.4%
Mean=443.8 » Mean = 729.5

6 N =323 (45.1%) N=13(1.8%) 323/336 = 96.1%
Mean=444.3 Mean = 727.2

7 N =336 (46.9%) N=6(0.8%) 336/342 = 98.2%
Mean =448.1 Mean=721.2

8 N=332(46.4%) N=0(0.0%) 332/332 = 100.0%
Mean = 443.3 Mean=na

9 N =346 (48.3%) N=0(0.0%) 346/346 = 100.0%
Mean = 449.7 Mean =na

® Percentages in these column are based on the total sample (N = 716) in order to
represent the proportion of the total sample affected.
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Based on two engagements (B4 + A4), 29.9% of 716 crews (N = 214) were flagged
as candidates for early elimination. Of these 214 crews, 200 actually failed to Q1, fora
predictive accuracy of 93.5%. The 214 crews flagged for early elimination on the basis
of two engagements produced a 10-engagement-based TTVIII mean score of 409.8.
Fourteen crews (2% of the total sample) were misidentified on the basis of two
engagements. That is, these 14 crews got off to a bad start on the two target
engagements, yet managed to turn in superior performances on other engagements and
eventually fired Q1 in spite of the contrary prediction.

With a three-predictor subset (B4 + A4 + Al), over a third of all crews (262 out of
716, or 36.6%) were identified for early elimination. Of the 262 identified crews, 247
(94.3%) actually failed to Q1. With four predictors (B4 + A4 + Al + A2), almost half of
all crews (47.3%) were flagged for early elimination, and the accuracy of the prediction
was 92.6%. Prediction accuracy for subset sizes two through seven averaged 94.7%.
Accuracy was 100% for subset sizes 8 and 9, but these figures were slightly inflated
because crews were mathematically eliminated from Q1 with less than 500 and 600
accumulated points, based on eight and nine completed engagements, respectively.

Early Identification of Q1 Crews

The converse of early elimination is the early identification of crews with a high
probability of firing Q1 on TTVIIL. These crews could be flagged for early qualification
awards and allowed to skip subsequent engagements, thereby saving ammunition in the
process.

Formalizing early qualification predictions. For any given subset size, the minimum
score (Equar) necessary for early qualification can be predicted from an adaptation of the
general equation defined earlier:

Equation 6: Equa =([700 + (1.65 * SE)]/ 10 )* Naw

Crews scoring at or above the specified scores could be pulled from the firing lane and
awarded early Q1 status with 95% confidence that had they been allowed to fire all 10
TTVIII engagements, they would have received a score of 700 or greater. Table 11
presents the required Eqa score for each subset size. After completing the number of
engagements listed in the Subset Size column, crews achieving a cumulative score equal
to or greater than the corresponding value in the Minimum Eg,, column would be eligible
for early Q1 status.

Testing the early qualification model. Early qualification predictions for subset sizes
from two through nine were tested with the 716 cases available in the database. .
Engagements in all subset sizes were based on optimal subsets of predictors as identified
by stepwise regression procedures (see Table 3). For example, using a subset of two,
each crew’s scores on engagements B4 and A4 were summed. Sums were then
partitioned into those < 185 and those > 185. Crews with scores > 185 were identified as
early first-run qualifiers. This procedure was then repeated for each subset size. With
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three engagements, for example, crews with scores of 268 or higher were flagged as early
qualifiers. With four engagements, a summed score of 346 was required, and so on.

} Table 11
: Minimum Eq.a Values for Early QI Identification
Minimum
Subset Prediction Equation Equal
Size
2. Eqm =[700+ (165 *136.2)] /10 *2 185
3 Eqa =[700+ (1.65 * 116.5)] / 10 * 3 268
4 Equa = [700+ (1.65%99.5)] /10 * 4 346
5 Eqa =[700+ (1.65*88.5)]/10*5 423
6 Ega =[700+ (1.65 * 78.4)] / 10 * 6 497
7 Eqa =[700+ (1.65 % 67.2)] / 10 %7 567
8 Eoqua = [700+ (1.65* 54.4)] / 10 * 8 632
9 Eqa =[700+(1.65%39.0)]/10*9 638
For each subset size, the accuracy of these predictions was then tested by noting
whether crews scoring at or above the stipulated cutoff points actually achieved TTVIII
Q1 status, based on all 10 engagements. The pertinent question was what proportion of
the crews identified by this procedure as eligible for early qualification awards actually
qualified on their first-run. Results of this test are shown in Table 12.
Table 12
Identification of Early Qualifiers
Subset Actual TTVII Actual TTVII
Size Score > 700 Score < 700 Predictive Accuracy
2 N= 143 (20.0%) N= 40 (5.6%) 143/183 = 78.1%
Mean = 821.4 Mean =613.9
3 N=109 (15.2%) N=13 (1.8%) 109/122 = 89.3%
Mean = 840.0 Mean = 639.7
4 N=82(11.5%) N=4(0.6%) 82/86 = 95.3%
Mean =862.9 Mean = 680.5
5 N=62 (8.7%) N=2(0.3%) 62/64 = 96.9%
Mean = 881.9 Mean = 659.5
6 N=77(10.8%) N=13(0.4%) 77/80 = 96.3%
Mean = 877.3 Mean = 655.7
7 N=102 (14.2%) N=2(0.3%) 102/104 = 98.1%
Mean = 864.9 Mean = 661.0
8 N=138(19.3%) N=5(0.7%) 138/143 = 96.5%
Mean = 850.9 Mean = 669.4
9 N=185(25.8%) N=2(0.3%) 185/187 = 98.9%
: Mean = 833.1 Mean = 693.0
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Predictive accuracy with this model was expected to cluster around 95%, and this
was the case except for the two smallest subset sizes, where predictive accuracy was less.
Markedly skewed predictor distributions would produce such diminished predictive
accuracy. An examination of the data confirmed this to be the case. Non-normality was
caused by a ceiling effect with N = 2 and N = 3 subset sizes. With N = 2, for example,
early identification was predicated on a B4 + A4 score > 185. Of the 183 cases with
scores > 185, 114 of them (62.3%) had a score of 200, the maximum possible. When the
subset size was increased to three, 29.5% of crews had a score of 300, the maximum
possible. In contrast, maximum possible scores were obtained by an average of only
3.6% of crews in subset sizes four through nine.

Because of the relatively low predictive accuracy with subset sizes two and three, the
minimum recommended subset size for early identification of Q1 crews is N= 4. Based
on four engagements, 86 out of 716 crews (12.0%) were flagged as early qualifiers. Of
these 86 crews, 82 achieved a TTVIII total score of > 700, thereby supporting the
accuracy of the prediction. The mean score of this group was 862.9. Only 4 out of 86
identified crews failed to Q1, and even though these 4 crews fell short of the required 700
points for Q1 status, their mean score was 680.5. Predictive accuracy of the early
qualification model exceeded 95% at every subset size from N = 4 through 9.

Combining Early Elimination with Early Identification

The combination of early elimination and early identification of Q1 crews is
illustrated in the hypothetical outcome matrix of Table 13. This table is designed to
illustrate the proportion of crews that could be recalled to the starting line and removed
from the range after firing the number of engagements specified in the first column. No
crews would be recalled after firing one engagement (the first row in the table). For
subset sizes two and three, crews would be recalled only for early elimination (because of
the relatively low predictive accuracy of early Q1 predictions for these two subset sizes).

Table 13
Combined Effect of Early Elimination and Early Identification of Q1 Crews -

Predicted Predicted

Minimum Score Minimum Score Early Early Total Crews Prediction
Subset to Avoid Early for Early Elimina- Qualifica- Eliminated Accuracy
Size Elimination Qualification tion (%) tion (%) (%) (%)
1 (B4) na na na na na na
2 (Ad) 95 na 29.9 na 29.9 93.5
3 (Al) 152 na 36.6 na 36.6 94.3
4 (A2) 214 346 473 12.0 59.4 93.2
5@®B3) 277 423 48.3 8.9 573 93.9
6 (B2) 342 497 46.9 112 58.1 96.2
7 (A5) 412 567 47.8 14.5 62.3 98.2
8 (B1) 500° 632 T 464 20.0 66.3 98.9
9 (B5) 600° 688 48.3 26.1 74.4 99.6
¢ Mathematical elimination.
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From the second row of Table 13 it can be seen that after firing B4 and A4, the
29.9% of crews failing to accumulate at least 95 points would be recalled to the starting
line and sent for remedial device-based training. After firing three engagements, a
minimum of 152 points would be required to avoid early elimination. About 36% of the
crews failed to meet this cutoff. Again, no early identification of Q1 crews would be
made, because of the relatively low predictive accuracy associated with only three
engagements.

Beginning with predictive subsets of size N = 4, crews could be recalled to the
starting line for either early elimination or early qualification. After firing four
engagements, for instance, 47.3% of crews in the database could have been recalled to
the starting line because of failure to accumulate at least 214 points. Another 12% of
crews could have been recalled and awarded early first-run qualification based on a score
of at least 346 points. The combination of early elimination and early qualification
would result in the removal of 59.4% of all crews from the firing lane based on 4
engagements.

Based on these results, we conclude that it is indeed possible to reduce the number of
live-fire tank gunnery engagements without compromising the validity of the TTVIII
evaluation process. Through use of the above-described target engagement reduction
methodology, to include the specific guidance provided on how to select predictive
engagement subsets, the ARNG can now conduct more resource-efficient live-fire tank
gunnery evaluation without compromising the integrity of the process. Later on in the
report, we will identify the approximate extent and kind of resource savings that can be
expected.

Experiment 2
Encouraged by the above findings, we proceeded to test out our ARNG TTVIII
target engagement reduction methodology on the AC. In general, our objective was to
determine if this methodology would generalize to the AC without sacrificing the validity
of the tank gunnery evaluation process.
Method

Data Source

Our data set consisted of first-run tank gunnery scores from 834 AC armor crews
that fired TTVII at Grafenwoehr, Germany, during 1993 and 1994.

Procedure
Stepwise multiple regression algorithms (SPSS, 1993, 1994) were used to determine

if subsets of TTVII engagements could be used to predict AC tank crews’” TTVIII total
scores. The best subsets of from two to nine engagements were identified and the
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predictive validity specified for each after cross-validation was performed to determine
the internal consistency and generalizability of the data.

Results

Descriptive Data

Table 14 compares ARNG and AC TTVIII data. AC mean scores were higher than
ARNG mean scores, = 35.62, p < .0001, and variances were lower. The lower variances
can be understood by examining Tables 15 and 16. Negative skews are evident in both
data sets, but the pattern is more pronounced among AC crews where almost all crews
(97.7%) scored at least 700 and, therefore, qualified, on their first run. Moreover, perfect
scores were attained by more than half of AC crews on all but two engagements.

Relative to ARNG scores, AC scores are clustered toward the high end of the TTVII
scale, thereby restricting both variance and range. The lowest AC score was 475, vs. an
ARNG low of 37.

Table 14
ARNG vs. AC TTVIII Data
ARNG Data (N=716) AC Data (N=834)
Mean SD Mean SD
Total 614.0 194.0 891.5 82.1
Al 48.3 415 843 272
A2 454 41.1 772 324
A3 572 36.3 89.1 22.2
A4 583 41.6 88.7 240
AS 653 40.2 93.1 19.1
B1 78.4 38.7 96.1 154
B2 62.8 41.4 88.1 24.1
B3 556 354 90.6 17.5
B4 65.8 40.7 89.5 238
B5 76.4 40.2 94 .4 19.1
Table 15
Measures of TTVIII Central Tendency
Measure ARNG Data ACData
Mean 614.0 891.5
Median 642 906
Mode 759 1,000

In spite of the different levels of performance found between ARNG and AC crews,
scores from both groups revealed similar patterns of relative performance on individual
engagements. That is, engagements that were difficult (or easy) for AC crews were also
difficult (or easy) for their ARNG counterparts. The corresponding patterns of relative
performance are evident when mean engagement scores, and the percentages of perfect
engagement scores, are rank ordered separately for ARNG and AC crews and then
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compared (see Table 17). The rank ordering of mean engagement scores, as well as that
of the percentage of crews firing a perfect score on individual engagements, were both
similar, with 7 (Spearman) = .81, p <.005, and .90, p < .001, respectively.

Table 16

TTVIII Statistics for ARNG and AC Crews
Variable ARNG Data AC Data
Range (Total Score) 37-997 475 - 1,000

% of Crews > 700 (Q1) 41.1 97.7
% Perfect Scores: Total 0.0 3.6
% Perfect Scores: Al 20.7 59.7
% Perfect Scores: A2 19.7 454
%o Perfect Scores: A3 15.5 59.4
%, Perfect Scores: A4 30.6 67.6
%o Perfect Scores: AS 39.8 76.3
%o Perfect Scores: Bl 69.1 933
% Perfect Scores: B2 26.1 58.9
% Perfect Scores: B3 7.0 49.5
% Perfect Scores: B4 41.1 72.8
% Perfect Scores: BS 66.8 86.7

Table 17

Rank-Order Correspondence of TTVIII Engagement

Performance for AC and ARNG Tank Crews

Mean Engagement % Perfect Scores
Score Rank Ranked High to Low
Engagement ARNG Crews ACCrews ARNGCrews  AC Crews

Al 9 9 7 6
A2 10 10 8 10
A3 7 6 9 7
A4 6 7 5 5
AS 4 3 4 3
B1 1 1 1 1
B2 5 8 6 8
B3 8 4 10 9
B4 3 5 3 4
B5 2 2 2 2

The first row in the AC data correlation matrix (see Table 18) gives part-whole
coefficients of correlation between the TTVIII total score and each individual
engagement score. Other rows in the matrix present engagement score intercorrelations.

Part-whole correlations ranged from .241 (B1) to .494 (A2) with a mean of .352.
Intercorrelations among engagements ranged from -.036 (B1, B4) to .095 (A4, B3) with a
mean of .031. Part-whole correlation and predictor intercorrelation highlights for ARNG
and AC crews are summarized in Table 19.
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Table 18 ‘
TTVIII Correlation Matrix for AC Dat

Al A2 A3 A4 AS Bl B2 B3 B4 B5

Total .405 494 .382 433 312 241 .303 .328 .368 251

Al .055 053 058 .029 001 -.001 017 .030 .008
A2 048 091 -.004 .093 018 067 030 -011
A3 . 074 .059 021 -.008 067 076 007
A4 .062 007 043 095 075 -016
A5 026 -.007 052 .055 032
Bl -016 .006 -.036 071
B2 .040 -013 -.034
B3 ) 028 .016
B4 027
Table 19

Part-Whole Correlation and Predictor Intercorrelation
Highlights for ARNG and AC Crews

ARNG Crews AC Crews

Part-whole correlations .

Range 432 to .568 241 to .494

Mean part-whole 487 352

Best predictor B4 (.568) A2 (494)

Weakest predictor B1 (.432) B1 (.241)
Predictor intercorrelations

Range 076 to .323 -.036 10 .095

Mean intercorrelation 155 031

The ARNG and AC data sets were similar in that relatively robust part-whole
correlations were paired with relatively low intercorrelations among engagements. The
low intercorrelation among engagements indicates that performance on one engagement
cannot be predicted on the basis of performance on any other engagement. The relatively
robust part-whole correlations, in contrast, indicate that every engagement has the
potential of making its own contribution to total score predictions. The data sets differed,
however, in that mean part-whole correlations and mean individual engagement
intercorrelations were significantly attenuated among AC crews, relative to ARNG crews,
z=3.20,p < .01 and z =2.45, p < .05, respectively. This attenuation may have been due
to reduced score ranges and restricted variance in the AC data.

Split-Half Cross-Validation

A split-group, cross-validation design, similar to that applied to the ARNG data, was
used to test for internal consistency and generalizability of the AC data. Half of the 834
tank crews were assigned at random (by SPSS Version 6.1 for Windows) to the
normative groups and the other half were assigned to the cross-validation group. A series
of least squares multiple regression prediction equations was developed based on the AC
normative group. Stepwise procedures were used to select optimal subsets of 1, 2, 3, 4, 5,
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6, 7, 8, and 9 predictor variables with a separate equation developed for each subset size.
All prediction equations were statistically significant, producing Multiple R ’s ranging
from .48 (based on one predictor) to .98 (based on nine predictors) and F ratios ranging
from 125.13 (df =1, 415) to 1,229.63 (df = 9, 407), with a rejection region of .0001 used
for all equations.

The equations for the normative group were then tested on the cross-validation group
and the accuracy of predictions for the two groups was compared. Results revealed that,
regardless of the number of predictors involved, models developed from normative group
data accounted for a comparable amount of TTVIII total score variance in the cross-
validation group for subset sizes of N = 1 through 8. With nine predictors, the normative
group equation was statistically less accurate when tested on the cross-validation group.
This Multiple R difference (.982 vs. .972), however, was small enough to be of no
practical value. Thus, the predictive models were found to be valid and, therefore, likely
to maintain similar efficiency when used to predict the TTVIII total scores of other AC
tank crew samples (at least those consisting of crews firing TTVIII in Grafenwoehr,
Germany). Given the similar outcomes of the separate group analyses, along with our
desire to obtain the best possible predictions form the largest sample size possible,
subsequent analyses were conducted on pooled-group data (N = 834).

Development of Pooled-Group AC Prediction Equations

Using stepwise multiple regression routines described for the ARNG, prediction
equations were developed for the best subsets of 1,2, 3,4, 5, 6, 7, 8, and 9 engagements
fired by AC crews. Prediction equations for every subset size were statistically
significant, producing Multiple R’s ranging from .49 (based on one predictor) to .98
(based on nine predictors) and F ratios ranging from 268.64 (df = 1, 832) to 2,555.44 (df
=9, 824). ‘Results for both ARNG and AC crews are summarized in Table 20, while the
derived AC prediction equations are shown in Table 21.

The first four columns in Table 20 pertain to ARNG data, and the second four
columns pertain to AC Data. Order of entry differed somewhat for ARNG and AC
crews, but the sequences were similar in that the first four predictors, which accounted
for a majority of TTVIII total score variance, were the same in both groups. The last two
columns of Table 20 test for differences in predictive accuracy of ARNG vs. AC
equations at each subset size. A significant outcome indicates that the Multiple R’s for
the two groups differed reliably. Predictive accuracy was lower among AC crews for
subset sizes one through six, whereas no differences were found for subset sizes seven
and eight. For nine predictors, the AC model was more effective than the ARNG model,
although the difference was small enough to be of no practical value.
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Table 20
Stepwise Multiple Regression Results for ARNG and AC Crews

ARNG Crews AC Crews ARNG vs. AC
Orderof Multiple  Adj. Standard Orderof Multiple  Adj. Standard
Entry R R? Error Entry R R Error z p
1 B4 .568 322 159.80 1 A2 494 . .243 71.46 197 <.05
2 A4 713 .507 136.23 2 A4 .630 .395 63.89 300 <.01
3 Al .801 .640 116.47 3 Al - 724 .523 56.75 359 <01
4 A2 .859 737 99.53 4 B4 791 .623 50.41 422 <.01
5 B3 .891 792 88.51 5 A3 844 .710 44.22 380 <.01
6 B2 915 832 78.42 6 B2 892 793 37.34 2.53 <.05
7 AS 939 .880 67.21 7 BS 928 .860 30.76 1.51 ns
8 Bl 960 921 54.37 8 AS 960 920 23.21 <1 ns
9 BS 981 962 39.03 9 B3 983 965 15.36 200 <.05
Table 21
Prediction Equations for Subset Sizes I to 9 (AC Crews)

Subset
Size Prediction Equation

1 "= 7947724 + 1.2531(A2)

2 ' = 682.7070 + 1.1628(A2) + 1.3422(A4)

3 Y* = 600.6519 + 1.0843(A1) + 1.1169(A2) + 1.2764(A4)

4 Y’ = 512.4405 + 1.0607(Al) + 1.0994(A2) + 1.1989(A4) + 1.1003(B4)

5 ' = 432.3853 + 1.0206(A1) + 1.0710(A2) + 1.0961(A3) + 1.1356(A4) + 1.0291(B4)

6 Y'=347.9194 + 1.0231(A1) + 1.0599(A2) + 1.1071(A3) + 1.0920(Ad) + 0.9825(B2) +

1.0452(B4)
7 Y’ =242.5341 + 1.0165(A1) + 1.0669(A2) + 1.1012(A3) + 1.1062(A4) + 1.0110(B2) +
1.0206(B4) + 1.1050(B5) .
8 Y’ = 158.8839 + 0.9997(Al) + 1.0753(A2) + 1.0556(A3) + 1.0593(A4) + 1.0602(A5) + 1.0166
(B2) + 0.98174(B4) + 1.0728(BS)
9 ' = 88.4395 + 0.9971(A1) + 1.0450(A2) + 1.0123(A3) + 1.0008(Ad4) + 1.0207(AS) +0.9898

(B2) + 0.9983(B3) + 0.9717(B4) + 1.0574((B5)

Predictive Accuracy and Number of Engagements

Table 22 summarizes the number of TTVIII engagements needed for various levels
of predictive accuracy for both ARNG and AC crews. The table is based on the best
possible combinations of engagements, as determined by stepwise multiple regression
procedures. Seven engagements are sufficient to ensure predictive accuracy of > 85%
with either ARNG or AC crews.
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Table 22
Relationship Between TTVIII Predictive Accuracy and Required
Number of Engagements for ARNG and AC Crews

Predictive =~ No. of Engagements  No. of Engagements

Accuracy - ARNG Crews AC Crews
100% 10 ' 10
95% 9 9
90% 8 8
85% 7 7
80%° 6 6
70% 4 5

? actually .793.

Random Subsets of Engagements

The predictive accuracy of randomly selected subsets of engagements was tested on
the AC data set at each subset size from two through nine. Five randomly selected
combinations of engagements were tested at each subset size. In all, 40 random subsets
were used, 5 at each of 8 possible subset sizes. The manner in which the random subsets
were constructed is described in the Random Subsets of Engagements section of
Experiment 1. The same random subsets were used in both experiments.

For each of the 40 random subsets, multiple regression procedures were used to
construct prediction equations. For each subset size, the predictive power of random
subsets of engagements was compared to the predictive power of the best possible
combination of engagements as determined by multiple regression procedures.

At every subset size (from two through nine) z tests between the mean Multiple R for
the random subsets and the Multiple R for the best predictors indicated that the best
predictors were superior. Z scores were 4.92, 5.10, 4.39, 5.70, 6.56, 5.99, 7.54, and 5.93
for subset sizes two through nine, respectively. All z values were significant at p < .01.
Details of the 40 multiple regression analyses are given in Appendix C, and a summary of
the results is presented in Table 23 in order to contrast the relative magnitudes of
Multiple R and R® values for random subsets vs. the best subsets. From Table 23, it can
be seen that substantial differences in predictive power occurred at subset sizes two
through six. With larger subsets sizes (seven through nine), differences in predictive
power were less pronounced, but the differences were statistically significant nonetheless.

Table 23 results contrast with those obtained from the ARNG data sample. With
ARNG crews, the best subsets of predictors (as determined by regression procedures)
were superior to random subsets of predictors only up to subset size six. Randomly
constituted subsets of seven, eight, or nine predictors were as effective as the best subsets
of corresponding size. For AC crews, however, the best predictors were superior at every
subset size. This difference can probably be attributed to the extreme skew in the AC
data. It will be recalled that the AC data set contained less variance than the ARNG set,
due to the fact that 97.7% of crews scored = 700 on a scale from 1 to 1,000. The AC data
set also had lower part-whole correlations, possibly due to truncated ranges among both
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predictor variables and the criterion. Thus, relative to the ARNG data, the AC data set
had fewer “good” predictors (and hence more “poor” predictors). (See Table 19.) With
fewer good predictors to go around, randomly constituted subsets of AC engagements
were more susceptible to excluding one of the better predictors and more vulnerable to
including one (or more) of the relatively poor predictors, thereby impairing the efficiency
of random subsets and ensuring the superiority of the best subsets.

Table 23
Multiple R and R Values for the Best Subset and for
Random Subsets of Engagements (AC Data)

Multiple R Adjusted R

Subset Best Random Best Random

Size Subset Subsets Subset Subsets
2 630 462 395 213
3 724 .583 .523 340
4 791 695 623 485
5 844 743 710 552
6 .892 .804 793 645
7 928 875 .860 764
8 .960 919 920 845
9 983 .969 965 938

An AC Shortcut Prediction Model

The shorteut prediction model that was developed and tested on the ARNG data set
was also tested on the AC sample. It will be recalled that the shortcut model consists of

three basic steps:

1: Add the engagement scores of the desired subset size
2: Divide the sum by New, the number of engagements in the subset
3: Multiply the quotient by 10

In this manner, each engagement is weighted equally (by dividing by N) and the
mean of all engagements in the subset is extrapolated to a 10-engagement TTVIII total
score (by multiplying by 10). :

The efficacy of the shortcut prediction model for AC crews was tested by '
constructing a series of shortcut predictor variables. For each subset size (from N =2 to
9), six shortcut predictor variables were constructed. The first shortcut variable for each
subset size was based on the best set of engagements identified in the AC stepwise
regression procedures (see the right-hand side of Table 20). For example, for the N=2
subset, the first shortcut predictor variable was calculated by the following procedure:

[(A2 + A4)/2] x 10

The resulting shortcut score was then used as an independent variable to predict actual
TTVIII scores.
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The other five shortcut predictor variables (at each subset size) were based on the
randomly constituted engagement subsets described earlier. These subsets are listed in
Appendix C. The first random shortcut predictor variable, for example, was created with
the following procedure:

[(A3 + B5)/2] x 10
Each random shortcut predictor variable was then used to predict actual TTVIII scores.

The results of the shortcut test appear in Table 24. The first column under the “Full
Regression Models™ heading shows R” values at each subset size for the best engagement
predictors as determined by stepwise multiple regression grocedu'res. The second column
under the Full Regression Models heading shows mean R” values from five randomly
constituted subsets of engagements. The data in the two columns under Full Regression
Models were adapted from Table 23 and are reproduced here to facilitate comparisons
with the shortcut-based prediction model outcomes.

Table 24
R Values for Full Regression Models Vs Shortcut Regression Models (AC Data)
Full Regression Shortcut Regression Models
Models (R?) ®*)
Subset Best Random Best Random
Size Subset Subsets Subset Subsets
2 395 213 394 211
3 523 .340 522 337
4 .623 485 .624 485
5 710 552 711 .550
6 .793 .645 794 .644
7 .860 764 .860 .764
8 920 845 920 .843
9 .965 .938 .965 .938

The last two data columns in Table 24 are based on shortcut regression models. The
next-to-last column presents R? values using shortcut models based on the best predictors
for each subset size. The last column contains mean R? values obtained from five
shortcut regression models based upon randomly selected subsets of predictors. The
results indicate that the shortcut method can be used successfully with reduced subsets of
any size. Table 23 also reinforces the earlier finding that for the AC data set random
subsets of predictors do not work as well as the best subsets, and this is the case for both
full regression and shortcut regression methods. '

Early Elimination and Early Qualification of AC Crews
Because the vast majority of AC crews achieved Q1, development of early
elimination and early qualification procedures, like those developed for the ARNG data,

were unnecessary. With the high Q1 rate found, a prediction of early qualification could
be applied to every crew in the AC data set with an accuracy rate of 97.7%.
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Discussion
ARNG and AC Similarities and Differences

Similarities. Both the ARNG and AC data sets were internally consistent, as
revealed by split-half cross-validation procedures. Hence the results from both data sets
have potential generalizability. The ARNG results are probably more generalizable
because of the variety of units contained in the SIMITAR database. For the AC,
generalizability will depend on how representative Grafenwoehr-firing units are of armor
units stationed stateside.

Both data sets revealed relatively low intercorrelations among engagement scores
and relatively robust part-whole correlations. And in spite of the different levels of
performance found between ARNG and AC crews, scores from both groups revealed
similar patterns of relative performance on individual engagements. That is,
engagements that were difficult (or easy) for AC crews were also difficult (or easy) for
their ARNG counterparts.

Perhaps of greatest importance, subsets of engagements proved to be effective
predictors of TTVIII total scores for both the AC and ARNG, and shortcut prediction
methods worked well for both AC and ARNG crews. Thus, subsets of engagements can
be used to predict TTVIII total scores among both ARNG and AC crews with known
degrees of predictive accuracy.

- Differences. Despite the fundamental similarities existing between the ARNG and
AC data, differences were found. The most striking of which was found between mean
TTVII scores. On the average, AC crews scored 277.5 points higher than ARNG crews.
These consistently high scores resulted in 97.7% of AC crews attaining Q1, vs. 41.1% of
ARNG crews. While these performance differences were not surprising given the vastly
greater training time available to AC units (Eisley & Viner, 1989), the elevated AC test
scores also had the effect of producing reduced variance and restricted score ranges. It
was to be expected that reduced variance would suppress part-whole correlations and
impair the effectiveness of regression-based prediction equations, but it also produced the
more subtle effect of impairing the effectiveness of randomly selected subsets of
engagements. For AC crews, at every subset size, randomly selected subsets of
engagements failed to work as well as the best subsets determined by multiple regression
procedures. In contrast, for ARNG crews randomly selected subsets of engagements
worked just as well as optimized subsets, as long as at least 7 engagements were used.
Elevated AC test scores also precluded the necessity of developing early elimination and
early qualification predictions. Although these procedures promise substantial resource
efficiencies among ARNG crews, they were not applicable to AC crews.

Because of the subtle but important differences between the ARNG and AC data
sets, training implications are somewhat different. For this reason, our discussion will
focus first on ARNG units and, then, on a separate consideration of AC training
implications.
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Resource-Efficient Tank Gunnery Evaluation in the ARNG

The findings of this research reveal that more resource-efficient evaluation of tank
gunnery proficiency in ARNG armor units is possible by reducing the number of
engagements fired on TTVIIL. Fewer engagements can be fired, and then the scores on
these engagements can be used to predict a 10-engagement-based TTVIII total score.
While elimination of even one engagement results in some loss of predictive precision
(albeit small), the extent of this loss can now be specified. In fact, it is now possible to
specify how much loss in predictive precision is associated with dropping any given
number of engagements from TTVIII (see Table 22). Thus, a user of this target
engagement reduction methodology can now stipulate the level of predictive accuracy
desired and then determine the engagement subset size associated with that level of
precision.

Specific vs. random subsets of engagements. Our ARNG findings also suggest
which TTVIII engagements should be fired for each subset size (from one to nine). For
subsets ranging in size from one to six engagements, it is important to use the specific
engagements identified by multiple regression statistical routines. For subsets containing
seven to nine engagements, however, specific engagements matter very little. Seven
engagements selected at random, for example, will work as well as the best seven
statistically-identified predictive engagements.

Practical implications. If only nine engagements are to be fired for the sake of
resource efficiency, then any engagement can be randomly eliminated. The same is true
when the number of engagements is reduced to eight, or even seven. Thus, up to three
engagements can be randomly selected and dropped with little concern for which specific
engagements they are. The random selection process can take place after the conclusion
of tank gunnery training. In this way, not only is TTVIII shortened, but units are
precluded from concentrating their training on only those engagements that are to be
evaluated later on TTVIIL Thus, training could proceed as if all 10 engagements were
going to be fired. Then, as many as three engagements could be selected at the last
minute for exclusion from the table.

The Shortcut Prediction Model for ARNG Tank Crews

From the standpoint of implementation, one of the more important products of this
research is the shortcut prediction model. By using this model, it is possible to fire a
reduced-engagement version of TTVII], use the results to estimate 10-engagement-based
TTVII scores, and never use any computational procedures more complicated than
simple arithmetic. The shortcut prediction model consists of selecting a subset of
engagements upon which a TTVIII total score prediction is to be based, firing the
selected subset of engagements, adding the individual engagement scores, dividing the
sum by the number of engagements in the predictive subset, and then multiplying by 10.
The result is a predicted 10-engagement-based TTVIII total score, the accuracy of which
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will differ little from the accuracy of a prediction based on a more complex multiple-
regression-based prediction equation.

Early Elimination and Qualification Predictions for ARNG Crews

All 10 TTVII engagements are useful predictors, in the sense that every engagement
accounts for a statistically significant degree of unique variance in TTVIII total scores.
Some engagements, however, account for more variance than others and, hence, are
better predictors. By administering the most predictive engagements early in the
evaluative process, it is possible to use a small subset of predictors to identify crews with
little chance of firing Q1. Conversely, it is also possible to identify crews with a high
probability of firing Q1, based on the same subset of key engagements. For example,
after firing four engagements (B4, A4, Al, and A2), crews with less than 214 cumulative
points have no more than a 5% probability of firing Q1. Moreover, crews receiving at
least 346 cumulative points on the same 4 engagements have at least a 95% probability of
firing Q1. Early elimination and early qualification predictions should be based only on
statistically identified engagements. If such predictions are to be based upon four
engagements, for instance, then they should be B4, A4, Al, and A2. They can be fired in
any order.

Early elimination predictions. Accurate early elimination predictions can be based
on as few as two specific engagements (B4 and A4). Based only on these two
engagements, it was possible to identify 29.9% of 716 crews (N = 214) that had little
chance of firing Q1. The accuracy of this prediction was 93.5%. That 1s, 200 of the 214
identified crews actually failed to fire Q1. When a third engagement was added to the
predictive subset (B4, A4, and Al), the proportion of identified crews rose to 36.6%, with
a predictive accuracy of 94.3%. With four predictors (B4, A4, Al, and A2), 339 out of
716 crews (47.3%) were predicted not to Q1, and 314 of the 339 (92.6%) actually failed
to Q1.

Early qualification predictions. Accurate early qualification predictions require the
use of all four of the above engagements (B4, A4, Al, and A2). Based on these four
engagements, it was possible to identify 86 out of 716 crews (12.1%) with a high
probability of achieving Q1 status. Of the 86 identified crews, 82 (95.3%) actually fired

Q1. :

Early elimination and early qualification predictions can be used in tandem. Based
on four engagements, for instance, 59.4% of all crews in the ARNG database were
flagged for either early elimination or early qualification. Thus, for 6 out of 10 crews, Q1
status was predictable (with approximately 95% predictive accuracy) after they fired only
four engagements. After this point, Q1 outcome on TTVIII was in question for only the
remaining 4 out of 10 crews. Early elimination and early qualification predictions have
implications for potential resource efficiencies, as discussed below in the Projected
TTVIII Resource Efficiencies section.
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Resource-Efficient Tank Gunnery Evaluation in the AC

Our findings also reveal that more resource-efficient evaluation of tank gunnery
proficiency in AC armor units is possible by reducing the number of engagements fired
on TTVII. Fewer engagements can be fired and, then, the scores on these engagements
can be used to predict a 10-engagement-based TTVIII total score. The predictive
accuracy, however, of subsets ranging in size from one to six is less among AC crews
than it is among ARNG crews. When the predictive subset size reaches seven or eight
engagements, predictive accuracy is equal for AC and ARNG crews. Moreover, nine-
engagement-based predictions are slightly more precise based on the AC data sample (see
Table 20). Generally, it would seem unwise to base AC TTVIII total score predictions on
less than seven engagements.

Specific subsets vs. randomly selected subsets of engagements. At all subset sizes,
greater predictive accuracy for AC crews is achieved by using subsets consisting of the
best predictors. Using specifically-identified predictors is especially important if
predictions are to be based on six or fewer engagements. Table 20 provides guidance on
which engagements to include at each subset size and Table 23 indicates the sacrifice in
predictive accuracy that is to be expected by using randomly constituted subsets vs. the
best subsets of engagements. :

Practical implications. If, for the sake of resource efficiency, only nine
engagements were to be fired, the best tactic would be to drop engagement (B1). This
engagement has been identified by regression procedures as contributing the least amount
of incremental unique variance. Dropping any other engagement will result in a
(statistically significant) loss of predictive accuracy. Reference to Table 23 indicates that
elimination of the regression-determined engagement B1 will result in a 10-engagement-
based TTVIII total score prediction that incorporates 96.5% predictive accuracy.
Elimination of a randomly selected engagement, on the other hand, will result in a total
score prediction that incorporates 93.8% predictive accuracy. The difference between
96.5% and 93.8% is only 2.7%, but it is statistically significant. As to whether this
difference is practically significant depends upon the judgment of the individual user.

The sacrifice in predictive accuracy resulting from random elimination grows,
however, as the size of the predictive subset shrinks. If the number of engagements is
reduced to eight, the discrepancy in predictive accuracy between the best predictors and
randomly selected subsets increases to 7.5%. With seven engagements, the discrepancy
between the two selection procedures is 9.6%. Thus, resource efficiencies through a
reduction in the number of TTVIII engagements in AC units should proceed only when
close attention is paid to the selection of specific engagements.

The Shortcut Prediction Model for AC Tank Crews
The shortcut prediction model was as successful among AC crews as it was among

ARNG crews. By using this simple computational model, it is possible to fire a reduced-
engagement version of TTVIIL, use the results to estimate 10-engagement-based TTVIII
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scores without resorting to anything more complicated than simple arithmetic, and obtain
as much predictive accuracy as if a more complex multiple-regression-based prediction
equation had been used.

AC Early Elimination and Early Qualification Predictions

The significant difference between ARNG and AC mean first-run TTVIII total
scores was accompanied by a marked difference in the proportion of ARNG and AC
crews achieving Q1. (Among ARNG crews, the figure was 41.1%. Among AC crews,
the figure was 97.7%.) Accordingly, with such a high Q1 level in the AC sample, early
elimination and early qualification predictions for AC crews are unnecessary. That is
because qualification outcomes can be predicted with 97.7% accuracy before a single
engagement is fired. With no other information about a particular crew other than that it
is from the AC sample, one could guess that the TTVIII outcome will be Q1 and enjoy
predictive success 97.7% of the time. Thus; the number of predicted early eliminations
will be negligible and virtually every crew will be a candidate for early qualification. Of
course, if almost 98% of crews Q1, one has to question the need to fire TTVIII at all, at
least in its present form. Presumably, resources could be used in other ways, such as on
TTXIL, or perhaps on more difficult TTVIII-type engagements in order to expand crew-
level gunnery capabilities. ‘In fact, TTVII engagements have recently been modified to
include as many as four targets on some engagements (Department of the Army, 1998).

Projected TTVIII Resource Efficiencies

In the following sections, resource efficiencies attributed to an across-the-board
* reduction in the number of TTVIII engagements apply to either the ARNG or AC.
Resource efficiencies attributed to implementation of early qualification or early
elimination procedures, however, apply only to the ARNG.

Resource efficiencies can be realized in three ways from implementation of the
findings of this research: through (1) an across-the-board reduction in the number of
TTVIII engagements, (2) implementation of early qualification procedures, and (3)
implementation of early elimination procedures. Resource efficiencies from an across-
the-board reduction in engagements and from implementation of early qualification
procedures are straightforward and relatively easy to estimate. Resource efficiencies
from early elimination procedures, however, are more difficult to quantify.

Resource efficiencies from an across-the-board reduction in the number of TTVIII
engagements fired. If fewer TTVIII engagements were fired, then fewer rounds of
ammunition would be needed. A reduction in the number of engagements from 10 to 7,
for example, would result in approximately a 30% across-the-board savings in
ammunition. Of course, there should be other savings as well, including reduced tank
operating (OPTEMPO) costs, but these savings are difficult to quantify because it is
impossible from our perspective to anticipate how crews would spend the extra time
saved by not firing 3 of the 10 TTVIII engagements.
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Resource efficiencies from implementation of early qualification procedures.
Potential savings from implementation of early qualification procedures are also
relatively easy to estimate. After firing four engagements, for example, approximately
12% of crews can be identified as having at least a 95% probability of firing Q1.
Ostensibly, these crews could be recalled to the starting line and removed from the range,
thereby conserving ammunition that would have been fired on engagements 5 through 10
(or 5 through 7, if a reduced subset strategy were in place). This would result in 12% of
crews firing 60% fewer rounds (based on skipping engagements 5 through 10), for a net
ammunition savings of 7.2%. This potential efficiency would be reduced to 3.6% if a
reduced subset methodology of seven engagements were in place (12% of crews times
30% of engagements = 3.6% ammunition savings). The 3.6% savings would be
incremental to across-the-board efficiencies resulting from reducing the number of
engagements to 7 from the current 10. Thus, ammunition savings from an across-the-
board reduction in the number of TTVIII engagements (from 10 to 7) and from
implementation of early qualification procedures would amount to approximately a
33.6% total ammunition savings.

Resource efficiencies from implementation of early elimination procedures.
Potential savings from early elimination procedures are difficult to quantify, because of
the different refire procedures used in ARNG units. Yet, potential economies of early
elimination are hard to ignore because of the relatively large proportion of crews that can
be identified on the basis of a small number of engagements. Perhaps the best way to
think of resource efficiencies resulting from early elimination procedures is in the context
of enhanced efficiency of range operation that would unquestionably redound to ARNG
units. By identifying and removing relatively deficient crews, the range could be made
more readily available to crews with a better chance of firing Q1. These more proficient
crews should achieve qualification without the need for many reruns. Moreover, when
the removed crews attained device-based training proficiency standards (see Hagman &
Smith, 1996) and return to the range, they should then be able to rapidly achieve
qualification. "

Summary of resource efficiencies. It is estimated that 33.6% of current TTVIII
ammunition costs could be saved by implementing an across-the-board reduction in the
number of TTVIII engagements from 10 to 7, and by implementing an early qualification
program wherein exceptionally proficient crews are pulled from the range and awarded
special recognition after firing four engagements. These projected savings do not include
projected enhanced range operating efficiencies from implementation of an early
elimination program.

Summary and Recommendations

The findings of this research suggest that more resource-efficient live-fire tank
gunnery evaluation is indeed possible for both the ARNG and AC without sacrificing the
validity of the evaluation process. In support of this notion, we have (a) presented a
target engagement reduction methodology developed to support resource-efficient, live-
fire gunnery evaluation on TTVIIL, (b) identified which specific target engagement
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subsets to use for best results, and (c) estimated the magnitude of resource savings to be
anticipated from use of these subsets for purposes of crew-level tank gunnery proficiency
certification.

Although the specific structure and content of more resource-efficient live-fire
evaluation scenarios will vary with the particular goals of the user (e.g., unit
commanders), we suggest consideration of the following five-step scenario as one that
will provide the best "readiness bang for the evaluation buck” for the ARNG.

Step 1. Fire a maximum of seven TTVIII engagements, with the first four being the
statistically identified best predictors (B4 + A4 + Al + A2) of TTVIII total

SCOTES.

Step 2. Use crew performance on these four best predictive engagements to support
early qualification decisions, and crew performance on the first two of these
engagements (B4 + A4) to support early elimination decisions. (Require
device-based training for crews that are eliminated early [See Hagman &
Morrison, 1996 for details})

Step 3. Add three engagements, selected at random from those remaining, to arrive
at the desired total subset size of seven. Do this within a month of scheduled
TTVII firing to discourage "training to the test."

Step 4. Predict TTVIII scores from tank crew performance (i.e., calculated
via the shortcut prediction model) on this seven-engagement subset.

Step 5. Use predicted scores from this subset, along with the early qualification
scores from Step 2, to evaluate/certify crew-level tank gunnery proficiency
on TTVIIL

We expect that ARNG adherence to these five steps will (a) produce an across-the-
board reduction of three engagements, (b) enable implementation of early '
elimination/qualification procedures, and (c) support accurate TTVIII proficiency
certification decisions--all at a substantial resource savings.

For the AC, the recommended scenario would involve only the following three
steps:

Step 1. Fire the seven TTVIII engagement subset (i.e., A2, A4, Al, B4, A3, B2, and
B5) found statistically to best predict total TTVIII scores.

Step 2. Predict TTVIII scores from tank crew performance (i.e., calculated
via the shortcut prediction model) on this seven-engagement subset.

Step 3. Use predicted scores from this subset to evaluate/certify crew-level tank
gunnery proficiency
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We expect that AC adherence to these three steps will support accurate crew certification
decisions at a substantial resource savings.

The confidence with which we offer these recommendations has been tempered
somewhat because some TTVIII engagements have been changed (Department of the
Army, 1998) since we began writing this report. Thus, additional research is needed to
determine whether or not our findings still apply to this new set of engagements. Our
target engagement reduction methodology, in contrast, should still apply regardless of the
specific set of engagements upon which it is applied.
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Appendix A
Characteristics of TTVII] Engagements
Engage-
ment Task Conditions/Situation Target(s) Ammo
Al Engage multiple  Move from turret-down to hufl-down. Using 1 moving T-72, 900-1,300 m. 3 rds TPDS-T
targets GAS, BATTLESIGHT from a stationarytank. 1 stationary T-72, 900-
(defense). Computer and LRF failure 1,300m.
A2 Engage Move from turret-down to hull-down. Using 1 stationary BMP, 900- 2 rds HEAT-TP-
simultaneous GPS, PRECISION. 1,100m. T
targets :
(defense). Using TC’s sight from a stationary tank. 1 BTR, 800-1,000m. 50 rds Cal .50
A3 Engage multiple  Using GPS from a movingtank. 2 sets of troop targets, 400- 200 rds 7.62mm
targets (offense). 600m and 700-900m.
A4 Engagemultiple  Using GPS, PRECISION from a movingtank. 2 stationary T-72s, 1,400- 3 rds TPDS-T
targets (offense).  NBC environment. 1,600m
AS Engagemultiple  Using GPS, PRECISION from a movingtank. 2 moving T-72s, 1,400- 3 rds TPDS-T-
targets (offense). : 1,600m.
(Swingtask.)
ASA Engagemultiple  Using GPS, PRECISION from a movingtank. 1 stationary T-72, 1 moving T- 3 rds TPDS-T
targets (offense). 72. 1,400-1,600m
(Alternate.)
B1 Engageatarget  Move from turret-down to hull-down. Using 1 stationary T-72, 1,400- 2 rds TPDS-T
(defense). GPSE, PRECISION from a stationary tank. 1,600m.
(Swing task.) Three-man crew, loader is killed.
B2 Fngage multiple Move from turret-down to hull-down. Using 2 stationary BMPs, 1,200- 3 rds HEAT-TP-
targets GPS, PRECISION from a stationary tank. 1,400m. T
(defense).
B3 Engagemultiple  Using GPS from a movingtank. NBC 1 stationary BMP, 400-600m. 1 rd HEAT-TP-T
targets (offense).  environment. 1 RPG team, 400-600m. 50 rds 7.62 mm
B4 Engage multiple  Using GPS, PRECISION from a movingtank. 1 stationary T-72, 1,300- 3 rds TPDS-T
targets (offense). 1,500m. 1 moving T-72,
1,300-1,500m.
BS Engageatarget  Move from turret-down to hull-down. Using 1 stationary T-72, 1,200- 2 rds TPDS-T
(defense). GAS with illumination from a stationarytank.  1,400m.
TIS failure.
BSA Engagea Move from turret-down to hull-down. Using 1 moving T-72, 1,700-1,900m. 2 rds TPDS-T
moving target GPS, PRECISION from a stationary tank.
(defense).
(Altemate.)

Note: Crews fire a total of 10 engagements. ASA and B5A are alternate engagements which can be fired
in lieu of AS and BS5, respectively. Crews fire either the main engagement or its alternate, never both.
When alternate engagements were fired, they were substituted for the main engagements.




Appendix B
Random Subsets of N = 2 Through 6 (ARNG Data)

Random subsets of N = 2. Table B-1 presents the results for subsets of N=2. The
first five rows present multiple regression results for the five random subsets. Means in
the sixth line of the table are based upon the five individual random subsets. The cell
under the “p” column for the “Mean” row is blank because it is meaningless to calculate a
mean probability level. The last line in the table provides multiple regression results based

upon the two best predictors (B4 + A4).

Table B-1 :
Random Subsets of N = 2 vs. the Two Best Predictors
Multiple Adjusted
Predictors R R? FQ2,713) p SE

A3, BS5 615 377 217.01 <.0001 153.16
Al, B2 .661 435 275.96 <.0001 145.85
A4, B5 .658 432 272.78 <.0001 146.22
B4, B5 642 411 250.62 <.0001 148.86
B1,B3 .600 .358 200.48 <.0001 155.42
Mean 635 403 243.37 149.90
Best 2 .713 .507 368.42 <.0001 136.23

Multiple R’s for the random subsets ranged from .600 to .661, with an average of
.635. Two-predictor random subsets accounted, on average, for 40.2% of criterion
(TTVIII) variance and produced SEs of approximately 149.90 along with highly
significant F values in excess of 200. By comparison, the two best predictors accounted
for 50.7% of criterion variance. A test between the mean Multiple R for the random
subsets and the Multiple R for the two best predictors indicated that the two best
predictors were superior to random subsets, z=2.64, p < .01.

Random subsets of N = 3. Table B-2 presents the results for subsets of N=3. The
last line in the table provides multiple regression results based upon the three best
predictors (B4 + A4 + Al).

Table B-2
Random Subsets of N = 3 vs. the 3 Best Predictors
Multiple Adjusted

Predictors R R F(3,712) p SE
Al, A4,B5 764 .583 333.71 <.0001 125.33
B2, B3, B5 .709 501 239.84 <.0001 137.10
Al,B3,B5 716 S11 249.59 <.0001 135.72
B2, B3, B4 722 519 258.13 <.0001 134.55
A3,A4,B4 775 .600 357.99 <.0001 122.75

Mean 737 542 287.85 131.09

Best 3 .801 .640 423.89 <.0001 116.47
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Three-predictor random subsets accounted, on average, for 54.2% of criterion
(TTVIII) variance and produced SEs of approximately 131.09 along with significant 7
values exceeding 200. By comparison, the three best predictors accounted for 64.0% of
criterion variance. A test between the mean Multiple R for the random subsets and the
Multiple R for the three best predictors indicated that the three best predictors were
superior to random subsets, z = 2.89, p < .01.

Random subsets of N = 4. Table B-3 presents the results for subsets of N=4. The
last line in the table provides multiple regression results based upon the four best
predictors (B4 + A4 + Al + A2).

Table B-3
Random Subsets of N = 4 vs. the Four Best Predictors
Multiple Adjusted
Predictors R R? F(4, 711) p SE

A2 A3, A5, Bl 769 .589 257.23 <.0001 124.36
Al, A2, A4, B3 836 .697 411.29 <.0001 106.87
A5, B2, B4, BS .808 651 334.90 <.0001 114.55
A3, A5, B4, BS 815 662 350.37 <.0001 112.86
Al, A2, A4,B5 838 .700 418.95 <.0001 106.18

Mean . .813 660 354.55 112.96

Best 4 859 737 501.29 <.0001 99.53

Four-predictor random subsets accounted, on average, for 66.0% of criterion
(TTVIII) variance and produced SEs of approximately 113 along with F ratios generally in
excess of 200. By comparison, the 4 best predictors accounted for 73.7% of criterion
variance. A test between the mean Multiple R for the random subsets and the Multiple R
for the 4 best predictors indicated that the 4 best predictors were superior to random
subsets, z=2.91, p < .01.

Random subsets of N = 5. Table B-4 presents the results for subsets of N=15. The
last line in the table provides multiple regression results based upon the five best predictors
(B4 + A4+ Al + A2 +B3).

Table B-4
Random Subsets of N = 5 vs. the Five Best Predictors
Multiple Adjusted
Predictors R R? F(5,710) p SE

A2 A3, A4, B2, B3 .861 .739 406.46 <.0001 99.06
A4, AS, Bl1,B3,B5 846 714 357.40 <.0001 103.81
A2, A3, A4, Bl1, B5 854 .728 383.58 <.0001 101.19
Al, A5,B1,B3, B4 .866 .749 426.69 <.0001 97.28
A2 A4 B1,B3,B5 .861 .740 407.67 <.0001 98.95

Mean 858 .734 396.36 100.06 -

Best 5 .891 792 : 545.02 <.0001 88.51
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Five-predictor random subsets accounted, on average, for 73.4% of criterion
(TTVIII) variance and produced SEs of approximately 100 along with F ratios that
averaged almost 400. By comparison, the 5 best predictors accounted for 79.2% of
criterion variance. A test between the mean Multiple R for the random subsets and the
Muiltiple R for the five best predictors indicated that the five best predictors were superior
to random subsets, z=2.57, p < .01.

Random subsets of N = 6. Table B-5 presents the results for subsets of N=6. The
last line in the table provides multiple regression results based upon the six best predictors
(B4+ A4+ Al +A2+B3 +B2).

Table B-5
Random Subsets of N = 6 vs. the Six Best Predictors
Excluded Multiple Adjusted
Predictors R R? F(6, 709) P SE
A2 A5 B1,B2 901 810 509.11 <.0001 84.55
A2, B3, B4, B5 .892 795 462.27 <.0001 87.90
A2, A3, B2, B4 .889 .789 44745 <.0001 89.04
Al, B1,B2,B3 902 .812 515.63 <.0001 84.12
Al, A2, B1, B5 .897 .803 485.23 <.0001 86.21
Mean .896 .802 483.94 86.36
Best 6 915 : 837 611.18 <.0001 78.42

Six-predictor random subsets accounted, on average, for 80.2% of criterion (TTVIII)
variance and produced SEs in the 80’s, along with F ratios that averaged almost 500. By
comparison, the 6 best predictors accounted for 83.7% of criterion variance. A test
between the mean Multiple R for the random subsets and the Multiple R for the six best
predictors indicated that the six best predictors were superior to random subsets, z =2.11,
p<.05.




Appendix C
Random Subsets of N = 2 Through 9 (AC Data)

Random subsets of N = 2. Table C-1 presents the results for subsets of N=2. The
first five rows present multiple regression results for the five random subsets. Means in
the sixth line of the table are based upon the five random subsets. The cell under the “p”
column for the “Mean” row is blank because it is meaningless to calculate a mean
probability level. The last line in the table provides multiple regression results based upon

the two best predictors (A2 + A4).

Table C-1
Random Subsets of N = 2 vs. the Two Best Predictors (AC Data)

Multiple  Adjusted

Predictors R R F(2, 831) p SE
A3, B5 455 205 108.59 <.0001 7323
Al, B2 .506 254 142.88 <.0001 70.94
A4, B5 .504 253 141.72 <.0001 71.62
B4, B5 439 191 99.41 <.0001 73.88
B1, B3 406 162 81.76 <0001 - 75.18
Mean 462 213 114.87 72.85
Best 2 630 395 273.02 <.0001 63.89

Multiple R’s for the random subsets ranged from .406 to .506, with an average of
.462. Two-predictor random subsets accounted, on average, for 21.3% of criterion
(TTVII) variance and produced SEs of approximately 72.85 along with significant
values generally in excess of 100. By comparison, the two best predictors accounted for
39.5% of criterion variance. A test between the mean Multiple R for the random subsets
and the Multiple R for the two best predictors indicated that the two best predictors were
superior to random subsets, z =4.92, p <.01.

Random subsets of N = 3. Table C-2 presents the results for subsets of N=3. The
last line in the table provides multiple regression results based upon the three best
predictors (A2 + A4 + Al).

Table C-2
Random Subsets of N = 3 vs. the Three Best Predictors (AC Data)

Multiple  Adjusted

Predictors R R? F(3, 830) p SE
Al, A4, B5 630 395 182.23 <.0001 63.90
B2, B3, B5 507 254 95.74 <.0001 70.93
Al, B3, B5 571 323 133.61 <.0001 67.58
B2, B3, B4 569 321 132.27 <.0001 67.69
A3,A4.B4 639 406 191.17 . <.0001 63.28
Mean .583 340 147.00 66.68
Best 3 724 .523 305.15 <.0001 56.75
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Three-predictor random subsets accounted, on average, for 34.0% of criterion
(TTVIII) variance and produced SEs of approximately 66.68 along with significant /°
values exceeding 100. By comparison, the three best predictors accounted for 52.3% of
criterion variance. A test between the mean Multiple R for the random subsets and the
Multiple R for the three best predictors indicated that the three best predictors were
superior to random subsets, z = 5.10, p < .01.

Random subsets of N = 4. Table C-3 presents the results for subsets of N =4. The
last line in the table provides multiple regression results based upon the four best
predictors (A2 + A4 + Al + B4).

Table C-3
Random Subsets of N = 4 vs. the Four Best Predictors (AC Data)

Multiple  Adjusted

Predictors R R? F(4,89  p SE
A2, A3, A5, Bl 701 489 20065  <.0001 58.69
Al, A2, A4, B3 469 .589 299.97  <.0001 52.63
A5, B2, B4, B5 613 372 12447 <0001 65.08
A3, A5 B4, B5 624 386 131.87  <.0001 64.37
Al, A2, A4, B5 769 589 299.76  <.0001 52.64

Mean 695 485 211.34 58.68
Best 4 791 623 34561  <.0001 50.41

Four-predictor random subsets accounted, on average, for 48.5% of criterion
(TTVINI) variance and produced SEs of approximately 59 along with F ratios generally in
excess of 200. By comparison, the four best predictors accounted for 62.3% of criterion
variance. A test between the mean Multiple R for the random subsets and the Multiple R
for the four best predictors indicated that the four best predictors were superior to random
subsets, z=4.39, p < .01.

Random subsets of N = 5. Table C-4 presents the results for subsets of N=5. The
last line in the table provides multiple regression results based upon the five best predictors
(A2 + A4 + Al +B4 + A3).

Table C-4
Random Subsets of N = 5 vs. the Five Best Predictors (AC Data)

Multiple  Adjusted

Predictors R R? F(5, 828) p SE

A2, A3, A4, B2, B3 .800 638 295.18 <.0001 49.39
A4, A5, B1, B3, B5 671 447 135.45 <.0001 61.11
A2 A3, A4,BI1,B5 77 601 252.27 <0001 51.87
Al, A5, BI1, B3, B4 719 515 177.68 <.0001 57.22
A2, A4, B1, B3, B5 750 .560 213.72 <.0001 54.47
Mean 743 552 214.76 5481

Best 5 844 710 ' 409.25 <.0001 44.22
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Five-predictor random subsets accounted, on average, for 55.2% of criterion
(TTVIII) variance and produced SEs of approximately 55 along with F ratios that
averaged over 200. By comparison, the five best predictors accounted for 71.0% of
criterion variance. A test between the mean Multiple R for the random subsets and the
Multiple R for the five best predictors indicated that the five best predictors were superior
to random subsets, z = 5.70, p < .01.

Random subsets of N = 6. Table C-5 presents the results for subsets of N=6. The
last line in the table provides multiple regression results based upon the six best predictors
(A2 + A4+ Al + B4+ A3 +B2).

- Table C-5
Random Subsets of N = 6 vs. the Six Best Predictors (AC Data)

Excluded - Multiple  Adjusted

Predictors R R’ F(6, 827) p SE
A2, A5, B1, B2 812 658 267.67 <0001 48.06
A2, B3, B4, B5 805 645 253.57  <.0001 48.92
A2, A3, B2, B4 765 583 19480 <0001 53.07
Al, B1, B2, B3 851 722 362.07  <.0001 43.29
Al, A2, B1, BS 786 615 22265  <.0001 50.98

Mean 804 645 260.15 48.86

Best 6 .892 .793 534.13 <.0001 37.34

Six-predictor random subsets accounted, on average, for 64.5% of criterion (TTVIII)
variance and produced SEs in the 40°s and 50’s, along with F ratios that averaged over
200. By comparison, the six best predictors accounted for 79.3% of criterion variance. A
test between the mean Multiple R for the random subsets and the Multiple R for the six
best predictors indicated that the six best predictors were superior to random subsets, z =
6.56, p < .01.

Random subsets of N = 7. Table C-6 presents the results for subsets of N=7. The
last line in the table provides multiple regression results based upon the seven best
predictors (A2 + A4 + Al + B4 + A3 + B2 + BS).

Table C-6
Random Subsets of N = 7 vs. the Seven Best Predictors (AC Data)

Excluded  Multiple  Adjusted

Predictors R R F(7, 826) p SE
A5, B4, B5 .893 795 46264  <.0001 37.19
B2, B3, B4 885 782 42721 <0001 38.38
A3, B2, B4 868 752 361.50 <0001 40.92
A2,A5 B2 - 843 - 708 28968  <.0001 4438
Al, A5, B3 .886 783 43077  <.0001 38.25
Mean 875 764 394.36 . 39.82
Best 7 928 860 73051  <.0001 30.76




Seven-predictor random subsets accounted, on average, for 76.4% of criterion
(TTVIII) variance and produced SEs of approximately 40, along with F-ratios that
averaged almost 400. By comparison, the seven best predictors accounted for 86.0% of
criterion variance. A test between the mean Multiple R for the random subsets and the
Muitiple R for the seven best predictors indicated that the seven best predictors were
superior to random subsets, z = 5.99, p < .01. Thus, unlike the case that obtained with
ARNG crews, where random subsets of N = 7 were as effective as the optimal subset of
this size, with AC crews randomly selected subsets were less effective than the seven best
predictors identified on the basis of stepwise multiple regression procedures.

Random subsets of N = 8. Table C-7 presents the results for subsets of N=8. The
last line in the table provides multiple regression results based upon the eight best
predictors (A2 + A4 + A1 +B4 + A3 + B2 + BS + AS).

Table C-7
Random Subsets of N = 8 vs. the Eight Best Predictors (AC Data)

Excluded Multiple Adjusted

Predictors R R? F(8, 825) p SE
Al, A4 .894 798 411.32 <.0001 36.96
Al. A3 .901 .810 44458 <.0001 35.82
B1,B2 939 .880 766.56 <.0001 28.42
A4, B3 929 861 644.91 <.0001 30.65
B2. B5 930 863 659.11 <.0001 30.36

Mean 919 845 585.29 32.44
Best 8 .960 920 120132 <0001 23.21

Eight-predictor random subsets accounted, on average, for 84.5% of criterion
(TTVIII) variance and produced SEs of approximately 32, along with F-ratios that
averaged almost 600. By comparison, the eight best predictors accounted for 92.0% of
criterion variance. A test between the mean Multiple R for the random subsets and the
Multiple R for the eight best predictors indicated that the eight best predictors were
superior to random subsets, z = 7.54, p < .01. Thus, unlike the case that obtained with
ARNG crews, where random subsets of N = 8 were as effective as the optimal subset of
the same size, with AC crews randomly selected subsets were less effective than the eight
best predictors identified on the basis of stepwise multiple regression procedures.

Random subsets of N = 9. Table C-8 presents the results for subsets of N=9. The
last line in the table provides multiple regression results based upon the nine best
predictors (A2 + A4 + A1 + B4 + A3 +B2 +B5 + A5 + B3).

Nine-predictor random subsets accounted, on average, for 93.8% of criterion
(TTVII) variance and produced SEs of approximately 20, along with F-ratios that
averaged approximately 1,566. By comparison, the eight best predictors accounted for
96.5% of criterion variance. A test between the mean Multiple R for the random subsets
and the Multiple R for the nine best predictors indicated that the nine best predictors were
superior to random subsets, z = 5.93, p <.01. Thus, unlike the case that obtained with
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ARNG crews, where random subsets of N = 9 were as effective as the optimal subset of
the same size, with AC crews randomly selected subsets were less effective than the nine
' best predictors identified on the basis of stepwise multiple regression procedures.

Table C-8
Random Subsets of N = 9 vs. the Nine Best Predictors (AC Data)

Excluded Multiple  Adjusted

Predictor R R? F(9, 824) p SE
B5 973 .946 1611.70  <.0001. 19.15
Al 958 916 101580  <.0001 2375
AS 973 .946 1627.74  <.0001 19.06
B4 .958 917 102066  <.0001 23.70
Bl 983 .965 2555.44 <0001 15.36

Mcan .969 938 1566.27 20.20
Best 9 983 .965 2555.44 <0001 15.36

Thus, regardless of subset size, more predictive power was achieved by following the
engagement selection strategy that was revealed by stepwise multiple regression
procedures. The discrepancy in predictive power between random and optimal subsets,
however, progressively diminishes as more engagements are added to the prediction
equation. With nine-engagement subsets, for example, the difference in predictive power
between random and optimal subsets is statistically significant, but of little practical
significance. Nonetheless, for subsets of any size using this set of AC data, best results
were obtained by using regression-determined combinations of engagements.
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